Status of Himalayan Gamma Ray Observatory (HiGRO) at Hanle

B S Acharya
Tata Institute of Fundamental Research, Mumbai, INDIA
(for the HiGRO collaboration)

5th Workshop on Detection of Air Showers at High Altitudes, APC, Paris, May 26-28, 2014
Himalayan Gamma Ray Observatory, HiGRO @ Hanle

- Hanle: a high altitude location in Himalayas
- Cost effective way of reducing energy threshold of atmospheric Cherenkov telescope

Higher Cherenkov photon density and less atmospheric attenuation of Cherenkov photons at higher altitudes
Himalayan Gamma Ray Observatory (HiGRO)

- Lower energy threshold using high altitude location
- Collaboration between BARC, IIA, TIFR and SINP

Located at Hanle in Himalayas
Latitude : $32^\circ 46' 46''$ N
Longitude : $78^\circ 57' 51''$ E
Altitude : 4270 m

- Located at the base camp of Indian Astronomical Observatory of IIA
- 260 spectroscopic nights/year

Phase 1 : HAGAR
(array of 7 small telescopes)
Phase 2 : MACE
(21m diameter single telescope)
High Altitude GAamma Ray (HAGAR) Telescope Array

- An array of 7 telescopes based on wavefront sampling technique
- Arrival time of Cherenkov shower front recorded at various locations in Cherenkov pool using distributed array of telescopes

- 7 telescopes consisting of 7 para-axially mounted parabolic mirrors of diameter 0.9 m
- f/D ~ 1
- Photonis UV sensitive phototube (XP2268B) at the focus of each mirror
- Field of view : 30° FWHM
HAGAR Telescope Array

Installation during 2005-2008
IIA & TIFR
Fabricated at Bangalore by IIA
Optical system + DAQ by TIFR
Tracking System

- Alt-azimuth mount, each axis driven by separate stepper motor
- Telescope movement control system consists of two 17 bit rotary encoders, two stepper motors with drivers and micro-controller based Motion Control Interface Unit (MCIU)
 - Maximum zenith angle coverage upto 85°
 - Steady state pointing accuracy of servo is ± 10 arc sec
 - Maximum slew rate: 30°/min

MCIU

Pointing offsets for 49 mirrors

Pointing accuracy of a mirror:
12.5 arcmin (SD=6.95 arcmin)

K. S. Gothe et al., Experimental Astronomy, Vol. 35, p. 489-506, 2013
Data Acquisition System

- High voltages given to individual PMTs are controlled through CAEN controller model (SY1527)
- PMT pulses are brought to control room through coaxial cables of type LMR-ultraflex-400 and RG213
- Data acquisition through CAMAC based instrumentation
- Event interrupt generated on coincidence of at least 4 telescope pulses
- Data recorded for each event:
 - relative arrival time of shower front at each mirror accurate to 0.25 ns using TDCs
 - pulse height at each telescope using 12 bit ADC
 - absolute event arrival time accurate to \(s \)
- Various count rates recorded every second for monitoring purpose
- Cherenkov pulses from telescopes recorded using Acqiris waveform digitizer with sampling rate of 1GS/s
Data Acquisition and Telescope Control System

CAMAC based => VME based + 8 ch Acqiris Digitiser
Modules Developed In-House

- CAMAC controller
- 16 ch. CAMAC Latch
- 16 ch. CAMAC Scaler
- CAMAC Real Time Clock
- NIM to ECL Converter
- ECL Delay Generator
- Programmable Delay Generator
- HAGAR Trigger Logic
- Programmable Discriminator
Simulations for HAGAR

CORSIKA + Detector simulation program developed in-house

CORSIKA v. 6.720:

VENUS, GHEISHA, EGS4, US standard atmospheric profile
Cherenkov photon wavelength range: 200-650 nm
Impact parameter range: 0-300 m
Viewcone: 0-4° for cosmic rays
HAGAR geometry, geomagnetic field at Hanle
Mirror reflectivity (80%), PMT quantum efficiency

<table>
<thead>
<tr>
<th>Type</th>
<th>Energy range</th>
<th># of showers generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma rays</td>
<td>20-5000</td>
<td>1 x 10^6</td>
</tr>
<tr>
<td>Protons</td>
<td>50-5000</td>
<td>3 x 10^6</td>
</tr>
<tr>
<td>Alpha particles</td>
<td>100-10000</td>
<td>6 x 10^6</td>
</tr>
<tr>
<td>Electrons</td>
<td>20-5000</td>
<td>3 x 10^6</td>
</tr>
</tbody>
</table>

Detector simulation program:

NSB generation:
2x10^8 ph/cm²/s/sr

PMT response:
gain=6.8x10^6, Gaussian 3 ns rise time

Attenuation in coaxial cables:
LMR-ultraflex-400 + RG213

Trigger formation:
4 fold trigger with 150 ns coincidence window
Comparison of Simulations with Observations

Variation of trigger rate with zenith angle →

Space angle distributions from plane front fitting of Cherenkov shower front ←

L. Saha et al., Astroparticle Physics
Performance Parameters of HAGAR

1. Trigger threshold : 17.5 photo-electrons/telescope

2. Trigger rate : Protons 9.2 Hz, α particles 3.7 Hz, Electrons 0.11 Hz
 Total trigger rate ~ 13.0 Hz

3. Energy threshold :
 208 GeV for vertical showers
 For ≥4 telescopes triggering

4. Expected gamma ray rate from Crab like sources = 6.3/min

5. Collection area = 3.2 × 10^4 m²

6. Sensitivity :
 1.2σ/√(hour) for Crab like sources

L. Saha et al., Astroparticle Physics
Comparison of Simulations with Observations

Rate-bias curve

Cherenkov pulse: width and amplitude

Charge in pulse

E. Kundu et al., NSGRA-2013
HAGAR Observation Summary

- Regular observational runs commenced in September, 2008

<table>
<thead>
<tr>
<th>Galactic sources</th>
<th>ON (Hours)</th>
<th>OFF (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crab</td>
<td>202.4</td>
<td>189.3</td>
</tr>
<tr>
<td>Geminga</td>
<td>126.3</td>
<td>76.1</td>
</tr>
<tr>
<td>Fermi pulsars</td>
<td>179.6</td>
<td>70.4</td>
</tr>
<tr>
<td>LSI+61 303</td>
<td>44.9</td>
<td>47.7</td>
</tr>
<tr>
<td>MGRO J2019+37</td>
<td>30.2</td>
<td>29.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extragalactic sources</th>
<th>ON (Hours)</th>
<th>OFF (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrk 421</td>
<td>196.1</td>
<td>227.1</td>
</tr>
<tr>
<td>1ES2344+514</td>
<td>114.0</td>
<td>131.0</td>
</tr>
<tr>
<td>Mrk 501</td>
<td>121.5</td>
<td>127.1</td>
</tr>
<tr>
<td>1ES1218+304</td>
<td>47.7</td>
<td>56.2</td>
</tr>
<tr>
<td>BL Lac</td>
<td>40.3</td>
<td>40.3</td>
</tr>
<tr>
<td>3C454.3</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>1ES1959+650</td>
<td>6.9</td>
<td>9.5</td>
</tr>
<tr>
<td>H1426+428</td>
<td>22.3</td>
<td>23.3</td>
</tr>
<tr>
<td>M87</td>
<td>2.0</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Calibration runs : 448.22 Hours

Total observation duration (during September, 2008 – September, 2013) : 2706.62 Hours
HAGAR Observation Summary

Seasonal variation of observation duration in Oct 2012 – Sept 2013
Data Analysis

(II) Event arrival direction profiles

(a) Source Positions
Shower Directions
NTT = All

(b) Source Positions
Shower Directions
NTT = All

(c) Number of Showers
Space Angle (deg.)

(d) Distribution
$\Delta \theta$ (exp-obs)
FWHM = 2.46
Mean = -0.20 \pm 0.06

(e) Distribution
$\Delta \phi$ (exp-obs)
FWHM = 14.69
Mean = 0.08 \pm 0.15

(f) Right Ascension (degree)
Declination (degree)
Analysis Method

- Observations carried out in ON-OFF pairs of 40 minutes duration each
- Selection cuts applied based on data quality, stability of rates etc
- Arrival direction of a shower is determined by reconstructing the shower front using arrival time of Cherenkov shower front at each telescope
- Cherenkov shower front approximated by plane front
- Space angle: angle between normal to the plane front and source direction

- Background space angle distributions are normalized w.r.t. source distributions by comparing shapes in LL to UL window

\[\gamma \text{ ray signal} = \text{excess events} \]

\[\text{no. of } \gamma\text{-rays} = \sum (S-cB) \]

C: normalization constant

B. B. Singh et al., NSGRA-2013
Observations & Data

- ON-OFF pairs of 40 minutes duration
- Calibration runs for systematic checks

<table>
<thead>
<tr>
<th>Source</th>
<th>Observation duration (hours)</th>
<th>Number of Run pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crab</td>
<td>110</td>
<td>171</td>
</tr>
<tr>
<td>Dark region</td>
<td>35</td>
<td>53</td>
</tr>
<tr>
<td>Delta leo (star m=2.7)</td>
<td>23</td>
<td>34</td>
</tr>
<tr>
<td>Milky way</td>
<td>18</td>
<td>32</td>
</tr>
</tbody>
</table>

Yearly Timeline:
- 2008 (Nov–Dec)
- 2009-2010 (Nov–Feb)
- 2010-2011 (Nov–Feb)
- 2011-2013 (Nov–Feb)
- 2012-2013 (Nov–Feb)
Data Analysis

Crab region:

RA # 05:34:32
DEC # 22:00:52
Epoch # 2000

FoV of HAGAR: 3 degree

Crab nebula

Milkyway

Zeta tauri star, m=3

RA # 05:37:38
DEC # 21:08:33
Epoch # 2000

Dark region
Data Analysis

Result – 1: Crab region vs Dark region

![Graph showing significance vs observation time for Crab region with NTT ≥ 4.]

<table>
<thead>
<tr>
<th>Crab region</th>
<th>Dark region</th>
<th>Milkyway</th>
<th>Star (δ-leo)</th>
<th>Crab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Runs</td>
<td>108/171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total duration (hours)</td>
<td>67.3/109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTT</td>
<td>Rate (min⁻¹)</td>
<td>σ</td>
<td>Rate (min⁻¹)</td>
<td></td>
</tr>
<tr>
<td>≥ 4</td>
<td>15.4 ± 0.4</td>
<td>38.6</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>≥ 5</td>
<td>9.7 ± 0.3</td>
<td>30.1</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>≥ 6</td>
<td>5.9 ± 0.3</td>
<td>23.5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>≥ 7</td>
<td>2.5 ± 0.2</td>
<td>14.6</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>
Data Analysis

Result – 2 : Dark vs Dark region

<table>
<thead>
<tr>
<th>Crab region</th>
<th>Dark region</th>
<th>Milkyway</th>
<th>Star (δ-tau)</th>
<th>Crab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Runs</td>
<td>108/167</td>
<td>Monte-Carlo simulation*</td>
<td>40/53</td>
<td></td>
</tr>
<tr>
<td>Total duration (hours)</td>
<td>67.3/109</td>
<td>26.1/34.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTT</td>
<td>Rate (min⁻¹)</td>
<td>σ</td>
<td>Rate (min⁻¹)</td>
<td>Rate (min⁻¹)</td>
</tr>
<tr>
<td>≥ 4</td>
<td>15.4 ± 0.4</td>
<td>38.6</td>
<td>6.3</td>
<td>0.3 ± 0.8</td>
</tr>
<tr>
<td>≥ 5</td>
<td>9.7 ± 0.3</td>
<td>30.1</td>
<td>3.9</td>
<td>-0.5 ± 0.7</td>
</tr>
<tr>
<td>≥ 6</td>
<td>5.9 ± 0.3</td>
<td>23.5</td>
<td>2.4</td>
<td>-0.4 ± 0.5</td>
</tr>
<tr>
<td>≥ 7</td>
<td>2.5 ± 0.2</td>
<td>14.5</td>
<td>1.5</td>
<td>0.4 ± 0.4</td>
</tr>
</tbody>
</table>

Conclusion: No artificial signal is added if the sky brightness around ON-source and OFF regions are almost same.
Data Analysis

Result – 3: Milky-way vs Dark region

<table>
<thead>
<tr>
<th>Crab region</th>
<th>Dark region</th>
<th>Milkyway</th>
<th>Star (δ-leo)</th>
<th>Crab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Runs</td>
<td>108/167</td>
<td>40/53</td>
<td>20/32</td>
<td></td>
</tr>
<tr>
<td>Total duration (hours)</td>
<td>67.3/109</td>
<td>26.1/34.6</td>
<td>11.5/17.6</td>
<td></td>
</tr>
<tr>
<td>NTT</td>
<td>Rate (min⁻¹)</td>
<td>σ</td>
<td>Rate (min⁻¹)</td>
<td>Rate (min⁻¹)</td>
</tr>
<tr>
<td>≥ 4</td>
<td>15.4 ± 0.4</td>
<td>38.6</td>
<td>6.3</td>
<td>0.3 ± 0.8</td>
</tr>
<tr>
<td>≥ 5</td>
<td>9.7 ± 0.3</td>
<td>30.1</td>
<td>3.9</td>
<td>-0.5 ± 0.7</td>
</tr>
<tr>
<td>≥ 6</td>
<td>5.9 ± 0.3</td>
<td>23.5</td>
<td>2.4</td>
<td>-0.4 ± 0.5</td>
</tr>
<tr>
<td>≥ 7</td>
<td>2.5 ± 0.2</td>
<td>14.6</td>
<td>1.5</td>
<td>0.4 ± 0.4</td>
</tr>
</tbody>
</table>

Conclusion: No systematic/artificial signal is added due to brightness of the milky-way.
Data Analysis

Result – 4 : Star vs Dark region

On-source : δ-léo
Off-source : dark region

<table>
<thead>
<tr>
<th></th>
<th>Crab region</th>
<th>Dark region</th>
<th>Milkyway</th>
<th>Star (δ-léo)</th>
<th>Crab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Runs</td>
<td>108/167</td>
<td>40/53</td>
<td>20/32</td>
<td>24/34</td>
<td></td>
</tr>
<tr>
<td>Total duration (hours)</td>
<td>67.3/109</td>
<td>26.1/34.6</td>
<td>11.5/17.6</td>
<td>17.3/22.7</td>
<td></td>
</tr>
<tr>
<td>NTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 4</td>
<td>15.4 ± 0.4</td>
<td>38.6</td>
<td>6.3</td>
<td>0.3 ± 0.8</td>
<td>9.2 ±0.8</td>
</tr>
<tr>
<td>≥ 5</td>
<td>9.7 ± 0.3</td>
<td>30.1</td>
<td>3.9</td>
<td>-0.5 ± 0.7</td>
<td>-0.1 ±0.9</td>
</tr>
<tr>
<td>≥ 6</td>
<td>5.9 ± 0.3</td>
<td>23.5</td>
<td>2.4</td>
<td>-0.4 ± 0.5</td>
<td>3.3 ±0.5</td>
</tr>
<tr>
<td>≥ 7</td>
<td>2.5 ± 0.2</td>
<td>14.6</td>
<td>1.5</td>
<td>0.4 ± 0.4</td>
<td>0.9 ±0.4</td>
</tr>
</tbody>
</table>

Conclusion: A star of magnitude 3 located at distance of 1 degree from a γ-ray source adds substantial systematic/artificial signal.
Data Analysis

Result – 4: Crab vs Dark region

<table>
<thead>
<tr>
<th></th>
<th>Crab region</th>
<th>Dark region</th>
<th>Milkyway</th>
<th>Star (δ-leo)</th>
<th>Crab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Runs</td>
<td>108/167</td>
<td>40/53</td>
<td>20/32</td>
<td>24/34</td>
<td></td>
</tr>
<tr>
<td>Total duration (hours)</td>
<td>67.3/109</td>
<td>26.1/34.6</td>
<td>11.5/17.6</td>
<td>17.3/22.7</td>
<td></td>
</tr>
<tr>
<td>NTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate (min⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 4</td>
<td>15.4 ± 0.4</td>
<td>6.3</td>
<td>0.3 ± 0.8</td>
<td>0.6 ± 1.1</td>
<td>9.2 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>38.6</td>
<td>30.1</td>
<td>-0.5 ± 0.7</td>
<td>-0.1 ± 0.9</td>
<td>5.8 ± 0.7</td>
</tr>
<tr>
<td>≥ 6</td>
<td>5.9 ± 0.3</td>
<td>2.4</td>
<td>-0.4 ± 0.5</td>
<td>-0.4 ± 0.7</td>
<td>3.3 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>23.5</td>
<td>20.1</td>
<td>1.5</td>
<td>0.4 ± 0.4</td>
<td>0.9 ± 0.4</td>
</tr>
<tr>
<td>≥ 7</td>
<td>2.5 ± 0.2</td>
<td>1.5</td>
<td>0.4 ± 0.4</td>
<td>0.1 ± 0.5</td>
<td>1.6 ± 0.2</td>
</tr>
</tbody>
</table>

Monte-Carlo simulation
HAGAR Results : Crab Nebula

- Only runs near transit of the source selected
- Observation duration after applying data quality cuts for data collected in 2008-2013 = 67.3 hours

Significance

<table>
<thead>
<tr>
<th>#triggering telescopes</th>
<th>γ-ray rate (per minute)</th>
<th>Significance σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥4</td>
<td>6.18±0.40</td>
<td>15.5</td>
</tr>
<tr>
<td>≥5</td>
<td>3.90±0.32</td>
<td>12.1</td>
</tr>
<tr>
<td>≥6</td>
<td>2.61±0.25</td>
<td>10.4</td>
</tr>
<tr>
<td>=7</td>
<td>1.67±0.17</td>
<td>8.96</td>
</tr>
</tbody>
</table>

Crab flux = \((2.07 \pm 0.13) \times 10^{-10}\) ph/cm\(^2\)/s for threshold of 218 GeV

B. B. Singh et al. NSGRA-2013
Figure 4.6: Orbital geometry of LSI 61-303. The phases for Inferior conjunction (INFC), Superior conjunction (SUPC), periastron (P), and apastron (A) are shown following Ref. [101] and they occur at orbital phases 0.313, 0.081, 0.275 and 0.775, respectively.

Figure 4.7: Location of LSI 61-303 (red circle with size 3 degrees; ON-source region) in the sky along with the two background regions (green circles with size 3 degrees; OFF-source regions).

Figure 4.8: Distribution of orbital phase vs exposure time for the observation of LSI 61-303.

Figure 4.9: Upper: Distribution of gamma-ray rates for 14 pairs of LSI 61-303 for NTT > 4. Lower: Light curve of LSI 61-303 for different trigger conditions.

Figure 4.10: Gamma-ray rates of LSI 61-303 as a function of orbital phase for different telescope trigger conditions.
Status at Hanle site

240 KWp Solar Power Plant for MACE
Subsystems of the MACE telescope

- Mechanical Structure (150T)
- Mirror Panels (1564/4)
- Mirror Alignment System
- Bull Gear & Drive System
- Modular Camera Electronics
- Instrumentation Shelters
- Data Connectivity
- Data Archive

R. Koul et al. NSGRA-2013
Assembly status in Jan, March & May 2013

Transportation requirements (size < 5mx3m)
TDU At Site

TDU RACK

Motorized AZ Axis Wheel

Shelter mounted on Structure
Mirror Assembly

1310 out of 1564 quality Diamond turned Al alloy mirror facets ready.

30 panels assembled & ready for deployment

On-axis spot size of assembled panels measured < 5mm diameter

Storage and transportation boxes for panels

9-panel mirror alignment system assembled

Manufacture of Actuators
Spot-size distribution status after (1310 mirrors)

\[\mu = 6.87 \pm 1.02 \text{ mm (ROC)} \]

\[\mu = 0.45 \pm 0.06 \text{ arc min} \]

Spot size for \(D_{80} \) at ROC.
Alignment at mirror and at panel side procedure

- Aligning 2 panels in a day, to be speedup
- Torque behind the mirror facets and behind the panel
MACE Camera

- 1088 PMTs (ETE 9117 WSB) with a uniform pixel resolution 0.125 deg.
- 16 PMTs are arranged in a Camera Integrated Module (CIM).
- PMTs are powered by Voltage Divider Network (VDN).
- The socket, VDN and a pre-amplifier assembly is housed in a metallic enclosure.
- Programmable HV required for PMT gain matching is mounted close to PMT tubes.

Picture courtesy: ED
Status: Integration of fully assembled 4 CIM modules with DC, CCC, SLTG, Console, Data Archive, Master Clock is completed. Performance evaluation in progress.
64 channel prototype camera housing
Overall architecture - Block diagram of camera electronics

Entire electronics on camera, only power and communication cables to camera from ground station
Trigger generation, **MACE telescope** – two stage, two phase pattern based coincidence

First Level Trigger -
- effective coincidence window ~ 5-6 ns
- pe threshold ~ 3-5 photo-electrons
- Selectable tight cluster pattern of 3 to 6 pixels
- Nearest neighbour FULL trigger and partial border triggers,
- Border strength - STRONG, MEDIUM, WEAK

Lower power, lower volume. Allows to compensate for PMT transit time variation with respect to high voltage bias
Camera Electronics

One 16 channel CIM tested extensively
Assembly of three additional modules
Integrated testing of 64 channels to start soon
Bulk production to start after 64 ch. testing
Data Archive – specifications finalised & procurement initiated
Data connectivity – Anunet link
Revised time-line

Review of Telescope Structure
 assembly: June 11-12, 2014

Alignment & Drive tests : from 15 June 2014

Dismantling of structure : 1 July 2014

Transportation to Hanle : 1 Aug 2014

start Installation at Hanle: 1 Sept 2014

finish Installation by mid 2015
Mkn421
Figure 4.11: Location of the MGRO J1919+37 (3 degree red circle; ON-source region) in the sky along with the two background regions (0 degree green circles; OFF-source regions).

Figure 4.12: Upper. Distribution of gamma-ray rates for all 9 pairs for NTT > 4. Lower. Light curve for MGRO J1919+37 for all 9 pairs for different telescope triggering conditions.