Status of Himalyan Gamma Ray Observatory (HiGRO) at Hanle

B S Acharya Tata Institute of Fundamental Research, Mumbai, INDIA (for the HIGRO collaboration)

5th Workshop on Detection of Air Showers at High Altitudes, APC, Paris, May 26-28, 2014

Himalayan Gamma Ray Observatory, HiGRO @ Hanle

- Hanle: a high altitude location in Himalayas
- Cost effective way of reducing energy threshold of atmospheric Cherenkov telescope

Higher Cherenkov photon density and less atmospheric attenuation of Cherenkov photons at higher altitudes

Himalayan Gamma Ray Observatory (HiGRO)

Lower energy threshold using high altitude location

Collaboration between BARC, IIA, TIFR and SINP

Located at Hanle in Himalayas Latitude : 32º 46' 46" N Longitude : 78º 57' 51" E Altitude : 4270 m

Located at the base camp of Indian Astronomical Observatory of IIA

> 260 spectroscopic nights/year

Phase 1 : HAGAR

 (array of 7 small telescopes)

 Phase 2 : MACE

(21m diameter single telescope)

High Altitude GAmma Ray (HAGAR) Telescope Array

> An array of 7 telescopes based on wavefront sampling technique

Arrival time of Cherenkov shower front recorded at various locations in Cherenkov pool using distributed array of telescopes

- 7 telescopes consisting of 7 para-axially mounted parabolic mirrors of diameter 0.9 m
 f/D ~ 1
- Photonis UV sensitive phototube (XP2268B) at the focus of each mirror
- Field of view : 3º FWHM

HAGAR Telscope Array

Tracking System

 Alt-azimuth mount, each axis driven by separate stepper motor
 Telescope movement control system consists of two 17 bit rotary encoders, two stepper motors with drivers and micro-controller based Motion Control Interface Unit (MCIU)

- ullet Maximum zenith angle coverage upto 85 $^\circ$
- Steady state pointing accuracy of servo is ± 10 arc sec
- Maximum slew rate : 30°/min

MCIU

Pointing accuracy of a mirror : 12.5 arcmin (SD=6.95 arcmin)

+ Telescope-1 * Telescope-2 • Telescope-3 ο Telescope-4 Δ Telescope-5 • Telescope-6 * Telescope-7 West

K. S. Gothe et al., Experimental Astronomy, Vol. 35, p. 489-506, 2013

Pointing offsets for 49 mirrors

Data Acquisition System

High voltages given to individual PMTs are controlled through CAEN controller model (SY1527)

PMT pulses are brought to control room through coaxial cables of type LMR-ultraflex-400 and RG213

Data acquisition through CAMAC based instrumentation

Event interrupt generated on coincidence of at least 4 telescope pulses

Data recorded for each event: relative arrival time of shower front at each mirror accurate to 0.25 ns using TDCs pulse height at each telescope using 12 bit ADC absolute event arrival time accurate to s

Various count rates recorded every second for monitoring purpose

Cherenkov pulses from telescopes recorded using Acqiris waveform digitizer with sampling rate of 1GS/s

Data Acquisition and Telescope Control System

CAMAC based => VME based + 8 ch Acqiris Digitiser

Modules Developed In-House

Simulations for HAGAR

CORSIKA + Detector simulation program developed in-house

CORSIKA v. 6.720 :

VENUS, GHEISHA, EGS4, US standard atmospheric profile Cherenkov photon wavelength range : 200-650 nm Impact parameter range : 0-300 m Viewcone : 0-4^o for cosmic rays HAGAR geometry, geomagnetic field at Hanle Mirror reflectivity (80%), PMT quantum efficiency

Туре	Energy range	# of showers generated
Gamma rays	20-5000	1 x 10 ⁶
Protons	50-5000	3 x 10 ⁶
Alpha particles	100-10000	6 x 10 ⁶
Electrons	20-5000	3 x 10 ⁶

Detector simulation program :

NSB generation : 2x10⁸ ph/cm²/s/sr PMT response : gain=6.8x10⁶, Gaussian 3 ns rise time attenuation in coaxial cables : LMR-ultraflex-400 + RG213 trigger formation : 4 fold trigger with 150 ns coincidence window

Comparison of Simulations with Observations

Performance Parameters of HAGAR

1. Trigger threshold : 17.5 photo-electrons/telescope

2. Trigger rate : Protons 9.2 Hz, α particles 3.7 Hz, Electrons 0.11 Hz Total trigger rate ~ 13.0 Hz

3. Energy threshold :

208 GeV for vertical showers For ≥4 telescopes triggering

4. Expected gamma ray rate from Crab like sources = 6.3/min

- 5. Collection area = $3.2 \times 10^4 \text{ m}^2$
- 6. Sensitivity : $1.2\sigma/\sqrt{(hour)}$ for Crab like sources

L. Saha et al. , Astroparticle Physics Vol. 42, p. 33-40, 2013

Comparison of Simulations with Observations

Rate-bias curve

— Charge in pulse

E. Kundu et al., NSGRA-2013

HAGAR Observation Summary

Regular observational runs commenced in September, 2008

OFF ON (Hours) (Hours) Crab 202.4 189.3 76.1 Geminga 126.3 Fermi pulsars 179.6 70.4 LSI+61 303 44.9 47.7 MGRO J2019+37 30.2 29.45

Calibration runs: 448.22 Hours

Galactic sources

Extragalactic sources

	ON (Hours)	OFF (Hours)
Mrk 421	196.1	227.1
1ES2344+514	114.0	131.0
Mrk 501	121.5	127.1
1ES1218+304	47.7	56.2
BL Lac	40.3	40.3
3C454.3	15.3	15.3
1ES1959+650	6.9	9.5
H1426+428	22.3	23.3
M87	2.0	2.7

Total observation duration (during September, 2008 – September, 2013) : 2706.62 Hours

(II) Event arrival direction profiles

Analysis Method

- > Observations carried out in ON-OFF pairs of 40 minutes duration each
- > Selection cuts applied based on data quality, stability of rates etc
- Arrival direction of a shower is determined by reconstructing the shower front using arrival time of Cherenkov shower front at each telescope
- Cherenkov shower front approximated by plane front
- Space angle : angle between normal to the plane front and source direction

Background space angle distributions are normalized w.r.t. source distributions by comparing shapes in LL to UL window

γ ray signal = excess events

no. Of γ -rays = $\sum (S-cB)$

C : normalization constant

B. B. Singh et al., NSGRA-2013

Observations & Data

ON-OFF pairs of 40 minutes duration Calibration runs for systematic checks

	Source	Observation duration (hours)	Number of Run pairs	
	Crab	110	171	
	Dark region	35	53	
	Delta leo (star m=2.7)	23	34	
	Milky way	18	32	
2008 (Nov –Dec)	2009-2010 (Nov – Feb)	2010-2011 (Nov – Feb)	2011-20132 (Nov – Feb)	2012-2013 (Nov – Feb)
Feb , 2009	Sep , 20	010 April , 2011	Se	ep 18, 2012 March 3, 2013

Crab region : RA # 05:34:32 DEC # 22:00:52 Epoch # 2000

FoV of HAGAR : 3 degree

Result - 1 : Crab region vs Dark region

Result - 2 : Dark vs Dark region

Crab region		Dark region	Milkyway	Star (δ-leo)	Crab		
1	lotal Runs	108/167	Monte-Carlo	40/53			
Total o	duration (hours)	67.3/109	simulation*	26.1/34.6			
NTT	Rate (min ⁻¹)	σ	Rate (min ⁻¹)	Rate (min ⁻¹)			
≥4	15.4 ± 0.4	38.6	6.3	0.3 ± 0.8			
≥ 5	9.7 ± 0.3	30.1	3.9	-0.5 ± 0.7			
≥6	5.9 ± 0.3	23.5	2.4	-0.4 ± 0.5			
≥7	2.5 ± 0.2	14.6	1.5	0.4 ± 0.4			

Conclusion: No artificial signal is added if the sky brightness around ON-source and OFF

regions are almost same.

Result - 4 : Star vs Dark region

Result – 4 : Crab vs Dark region

Crab region		Dark region	Milkyway	Star (δ-leo)	Crab			
T	otal Runs	108/167	Monte-Carlo	40/53	20/32	24/34		
Total duration (hours)		67.3/109	simulation*	26.1/34.6	11.5/17.6	17.3/22.7		
NTT	Rate (min ⁻¹)	σ	Rate (min ⁻¹)	γ (min ⁻¹)	σ			
≥4	15.4 ± 0.4	38.6	6.3	0.3 ± 0.8	0.6 ±1.1	9.2 ± 0.8	6.2 ±0.4	15.5
≥ 5	9.7 ± 0.3	30.1	3.9	-0.5 ± 0.7	-0.1 ±0.9	5.8±0.7	3.9 ±0.3	12.1
≥6	5.9 ± 0.3	23.5	2.4	-0.4 ± 0.5	-0.4 ±0.7	3.3 ± 0.5	2.6 ±0.3	10.4
≥7	2.5 ± 0.2	14.6	1.5	0.4 ± 0.4	0.1 ± 0.5	0.9 ± 0.4	1.6 ±0.2	8.9

HAGAR Results : Crab Nebula

> Only runs near transit of the source selected

Observation duration after applying data quality cuts for data collected in 2008-2013 = 67.3 hours

#triggering telescopes	γ-ray rate (per minute)	Significance σ
≥4	6.18±0.40	15.5
≥5	3.90±0.32	12.1
≥6	2.61±0.25	10.4
=7	1.67 ±0.17	8.96

Crab flux = $(2.07 \pm 0.13) \times 10^{-10} \text{ ph/cm}^2/\text{s}$ for threshold of 218 GeV

B. B. Singh et al. NSGRA-2013

Figure 4.7: Location of LSI 61+303 (red circle with size 3 degrees; ON-source region) in the sky along with the two background regions (green circles with sizes 3 degrees; OFF-source regions).

Figure 4.6: Orbital geometry of LSI 61+303. The phases for Inferior conjunction (INFC), Superior conjunction (SUPC), periastron (P), and apastron (A) are shown following Ref. [101] and they occur at orbital phases 0.313, 0.081, 0.275 and 0.775, respectively.

Number of pairs

Figure 4.9: Upper: Distribution of gamma-ray rates for 34 pairs of LSI 61+303 for NTT ≥ 4. Lower: Light curve of LSI 61+303 for different trigger conditions.

2 -+ -10 NTT≥4 .10 H-1-1 -20 (mim) -----11 **⊢∃** → Gamma rate NTT≥5 .11 2 - I 11 NTT ≥6 -10 .20 11 -10 NTT=7 -20 0.2 0.6 0.8 0.4 Orbital Phase

Figure 4.10: Gamma ray rates of LSI +61 303 as a function of orbital phase for different telescope trigger conditions.

61+303.

Status at Hanle site

Subsystems of the MACE telescope # Mechanical Structure (150T) # Mirror Panels (1564/4) # Mirror Alignment System **# Bull Gear & Drive System # Modular Camera Electronics #** Instrumentation Shelters **#** Data Connectivity # Data Archive

R. Koul et al. NSGRA-2013

Assembly status in Jan, March & May 2013

Transportation requirements (size < 5mx3m)</pre>

TDU At Site

TDU RACK

Motorized AZ Axis Wheel

Shelter mounted on Structure

Mirror Assembly

- # 1310 out of 1564 quality Diamond turned AI alloy mirror facets ready.
- # 30 panels assembled & ready for deployment
- # On-axis spot size of assembled panels measured
 - < 5mm diameter
- # Storage and transportation boxes for panels# 9-panel mirror alignment system assembled# Manufacture of Actuators

Alignment at mirror and at panel side procedure

aligning 2 panels in a day, to be speedup

Torque behind the mirror facets and behind the panel

MACE Camera

- 1088 PMTs (ETE 9117 WSB) with a uniform pixel resolution 0.125 deg.
- 16 PMTs are arranged in a Camera Integrated Module (CIM).
- PMTs are powered by Voltage Divider Network (VDN).
- The socket, VDN and a preamplifier assembly is housed in a metallic enclosure.
- Programmable HV required for PMT gain matching is mounted close to PMT tubes.

Picture courtesy: ED

27/11/2013

mankuzhiyil.nijil@gmail.com

Status: Integration of fully assembled 4 CIM modules with DC, CCC, SLTG, Console, Data Archive, Master Clock is completed. Performance evaluation in progress

64 channel prototype camera housing

Overall architecture - Block diagram of camera electronics

Trigger generation, **MACE** telescope – two stage, two phase pattern based coincidence

First Level Trigger -

- effective coincidence window ~ 5-6 ns
- •pe threshold ~ 3-5 photo-electrons
- Selectable tight cluster pattern of 3 to 6 pixels
- Nearest neighbour FULL trigger and partial border triggers,
 Border strength STRONG, MEDIUM, WEAK
 Lower power, lower volume. Allows to compensate for PMT

transit time variation with respect to high voltage bias

Camera Electronics

- # One 16 channel CIM tested extensively # Assembly of three additional modules # Integrated testing of 64 channels to start soon # Bulk production to start after 64 ch. testing # Data Archive – specifications finalised & procurement initiated
- # Data connectivity Anunet link

Revised time-line

Review of Telescope Structure assemby:June11-12, 2014 # Alignment & Drive tests : from 15 June 2014 # Dismantling of structure : 1 July 2014 # Transportation to Hanle : 1 Aug 2014 # start Installation at Hanle: 1 Sept 2014 # finish Installation by mid 2015

Mkn421

Figure 4.11: Location of the MGRO J2019+37 (3 degree red circle; ON-source region) in the sky along with the two background regions (3 degree green circles; OFF-source regions).

