

Werner Hofmann May 2014

CTA CONSORTIUM

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Processes in relativistic jets, winds and explosions?
- Exploring cosmic voids

Theme 3: Physics Frontiers – beyond the SM

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high energy photons?
- Do axion-like particles exist?

REQUIREMENTS & DRIVERS

Credit: Multimedia Service, Institute of Astrophysics of Canary Islands

FROM CURRENT ARRAYS TO CTA

light pool radius R ≈100-150 m \approx typical telescope spacing Sweet spot for best triggering and reconstruction: most showers miss it! large detection area more images per shower lower trigger threshold

Science-optimization under budget constraints: Low-energy γ high γ-ray rate, low light yield → require small ground area, large mirror area High-energy γ low γ-rate, high light yield → require large ground area, small mirror area

few large telescopes for lowest energies

4 LSTs

~km² array of medium-sized telescopes

large 7 km² array of small telescopes,

~70 SSTs

~25 MSTs plus ~24 SCTs extension

SOUTHERN AND NORTHERN SITES

North site

DIFFERENTIAL FLUX SENSITIVITY

SENSITIVITY TO TRANSIENTS

CTA TELESCOPES

TELESCOPE SPECS

	SST "small"	MST "medium"	LST "large"	SCT "medium 2-M"
Number	70 (S)	25 (S) 15 (N)	4 (S) 4 (N)	24 (S)
Spec'd range	> few TeV	200 GeV to 10 TeV	20 GeV to 1 TeV	200 GeV to 10 TeV
Eff. mirror area	> 5 m²	> 88 m²	> 330 m ²	> 40 m²
Field of view	> 8°	> 7°	> 4.4°	> 7°
Pixel size ~PSF θ ₈₀	< 0.25°	< 0.18°	< 0.11°	< 0.075°
Positioning time	90 s, 60 s goal	90 s, 60 s goal	50 s, 20 s goal	90 s, 60 s goal
Availability	> 97% @ 3 h/week	>97% @ 6 h/week	>95% @ 9 h/week	>97% @ 6 h/week
Target capital cost	420 k€	1.6 M€	7.4 M€	2.0 M€

LARGE TELESCOPE (LST)

23 m diameter
389 m² dish area
28 m focal length
1.5 m mirror facets

4.5° field of view 0.1° pixels Camera \emptyset over 2 m

Carbon-fibre structure for 20 s positioning

Active mirror control

4 LSTs on South site 4 LSTs on North site Prototype = 1st telescope

REFINEMENTS IN DESIGN ("PHASE 3")

Adding more elements increases stiffness and redundancy for same cost and weight

Detailed modeling of wind loads

Tests of new end connectors for CF tubes

Elevation drive prototype

MEDIUM-SIZED 12 M TELESCOPE OPTIMIZED FOR THE 100 GEV TO ~10 TEV RANGE

100 m² dish area16 m focal length1.2 m mirror facets

8° field of view ~2000 x 0.18° pixels

25 MSTs on South site 15 MSTs on North site

> Berlin MST prototype operational

PHOTOMULTIPLIER CAMERAS

Recording signal waveform for "interesting" (triggered) images

Options:

- Capacitor pipeline + analog trigger + (identical) "drawers"
 - NectarCam (Pixel cluster prototypes operational)
 - LSTCam (Pixel cluster prototypes operational)
- Flash-ADC + digital trigger + rack-based electronics
 - Flashcam (144 pixel prototype operational)

DATA ACQUISITION @ TRIGGER

DUAL-MIRROR TELESCOPES

- Reduced plate scale
- Reduced psf
- Uniform psf across f.o.v.

→ Cost-effective small telescopes with compact sensors (SST-2M)

→ Higher-performance
 telescopes with small pixels
 (SCT)

CHEC SST CAMERA

Prototypes ready: CHEC-M: 10/2014 CHEC-S: Spring 2015

SINGLE-MIRROR SST PROTOTYPE

MEDIUM-SIZED DUAL MIRROR TEL EXTENDING THE MST ARRAY

9.7 m primary
5.4 m secondary
5.6 m focal length, f/0.58
40 m² eff. coll. area
PSF better than 4.5' across 8° fov

8° field of view **11328 x 0.07° SiPMT pixels** Target readout ASIC

Extend South array by adding 24 SCTs

→ increased γ-ray collection area
 → improved γ-ray angular resolution

OPTICS & ALIGNMENT CHALLENGING

 NSF MRI Project: Prototype (full primary, partial secondary, partial camera) fabricated by 9/2014, commissioned and verified by 9/2015

PROTOTYPING AT VERITAS

Actuators Edge sensors Controller

ANGULAR RESOLUTION

PROTOTYPING AND PRE-PRODUCTION

Prototypes

- MST @ Berlin
- SST-1M @ Cracow, SST-2M @ Sicily, Paris
- SCT @ VERITAS

Pre-production telescopes:

- to verify mass production and deployment
- "Mini-arrays" at final sites, used in final arrays
- 1 LST
- O(3) MSTs
- O(5) SST-1M
- O(5) SST-2M

Then mass production and deployment

CTA Calibration

Ambitious requirements: Overall systematic error on energy scale <15% Systematic error on Cherenkov light intensity <8%; goal 5% Systematic error related to atmosphere <7% Systematic error on collection area: <12%; goal 8%

CALIBRATION

Camera calibration

 Light flashers (simple flashers on each telescope, complex moveable calibration light source)

Telescope / array calibration

- Telescope cross-calibration with showers (<1%)
- Telescope absolute calibration with muon rings (1-2%)
- Array absolute calibration with CR electron spectrum (<10%)

Atmosphere

- Calibration
 - Extinction from LIDAR, star photometry
 - Atm. profiles from global weather models (& radiosondes)

Pointing forecast

- All-sky camera
- Ceilometer

 \mathbf{c} NG18ta Bata HA

PROCESSING NEEDS

Peak number of CPU cores needs (2013 CPU performances)

STORAGE CAPACITY

SOFTWARE DEV. CENTERS

SOFTWARE DEV. CENTERS

CTA SITE SELECTION

SITE SELECTION

AVERAGE ANNUAL OBSERVATION TIME

SENSITIVITY FOR FIXED OBS. TIME INTERPLAY OF HEIGHT AND GEOMAGNETIC FIELD

NO GEOMAGNETIC FIELD

Without geomagnetic field, the gamma-ray showers usually look quite symmetric.

(Picture showing distribution of Cherenkov light arriving on ground).

EFFECT OF GEOMAG. FIELD

With geomagnetic field, the electron-positron pairs split up perpendicular to the B field.

CTA OBSERVATORY

FOR THE FIRST TIME IN THIS FIELD: OPEN ACCESS

- CTA North and South through single portal, common calls for proposals, identical tools
- Queue mode scheduler taking into account actual sky conditions, sub-arrays & conditions requested in proposal, priorities, TOOs

SHARING OF OBSERVATION TIME: UNDER DISCUSSION

Example; sharing will be time dependent

- Open time: open to participating countries (?)
- Archival data: fully open, 1yr proprietary time (?)

Core Programme using Consortium guaranteed time

- Provides legacy data sets (large sky surveys, surveys of object classes)
- Pre-defined deliverables (catalogs, sky maps, …)
- External review

Core Programme fraction time dependent; large in first years, modest later

TOWARDS APPROVAL

CONCENTRATING ON TDR(S)

1st version this summer to EC as CTA Preparatory Phase deliverable Final (public) version late Q1, 2015

SUMMARY

CTA STATUS

Design

- Current stage: telescope designs essentially complete; advanced prototyping
- Passed Preliminary Technical Design Review, based on Preliminary Technical Design Report (PTDR)
- Final Technical Design Report (TDR) in Q1 2015, Critical Design Review (CDR) in Q1/2 2015

Organisation

- CTA Consortium of >170 institutes, 28 countries
- Project office (PO) in Heidelberg
- Nature of final legal entity and of location of CTA HQ tbd
- PO supported by FP7 Prep Phase, until mid-2014
- Currently establishing CTA Observatory GmbH interim legal entity, operational mid-2014, to operate PO, serve as legal partner for site agreements etc.

CTA STATUS

Site selection

- Site evaluation and scientific ranking by CTA Consortium
- Site recommendation by agency-appointed Site Selection Committee
- Decision by agency board (Resource Board / LE Council)
- RB Decision April 2014:
 - South: start the negotiations for Aar/Namibia and ESO/Chile, keeping Leoncito/ Argentina as a third option. Aim for final decision before end of 2014.
 - North: decision of negotiations postponed

Approval/construction

- Aim for construction approval in mid-2015
- Estimate 5 year construction period
- Early operation of partial arrays
- Investment cost 150 M€ (2006), escalates to ~200 M€; updated cost estimate in prep.

CTA STATUS

CTA use (working assumptions, tbc)

- Open observatory; regular AOs calling for proposals, bulk of time restricted to proposals from participating countries
- Guaranteed time for CTA Consortium for use for Key Science Projects providing legacy data sets (surveys etc); fraction of guaranteed time large in the first years, modest later
- After (1 y) proprietary period data is made fully open via archive
- Open analysis tools