

The Pierre Auger Observatory:

results, open questions and future prospects

Antonella Castellina INFN & INAF, Torino, Italy

for the Pierre Auger Collaboration

Paris High Altitude Workshop, 26–28 May 2014

A.Castellina

The scientific case for Auger

assess the existence or absence of the cut-off measure the anisotropy in the quest for the sources find out the nature of the primary cosmic rays ... with a hybrid detector

The results

the ankle and the cut-off clearly measured the anisotropy : LSA, point sources, etc. the composition: primary nuclei, photons, neutrinos the hadronic interactions: muons, p-p cross section ... a wealth of info on UHECRs

The scientific case : beyond 2015

origin of the cut-off : GZK or reach of E_{max} ? the proton fraction at UHE : particle astronomy ? the hadronic interactions and new physics ... improving the composition knowledge ...increasing the statistics

The Pierre Auger Observatory

[©]Water-Cherenkov tanks [§]1660 in a 1.5 km standard grid [§]71 in 0.75 km infill grid (~30 km²)

Selection Se

- 24 in 4 buildings overlooking SD
- 3 in I building overlooking the Infill

Muon detectors

engineering array phase – 61 aside the Infill stations

Gerefactory Gerefactory Sciences (Sectors Sciences Constraints)
Sectors (and the sectors of the sect

☑R&D GHz antennas

 AMBER - MIDAS (2 imaging radio telescopes)
 EASIER (61 radio sensors)

Simultaneous detection of UHE cosmic rays by means of SD : 100% duty cycle - precise determination of aperture and exposure FD : 10% duty cycle - almost calorimetric measure of energy

Two complementary techniques: different shower parameters contribute to identify the primary arrival direction, energy and nature

Different techniques: measurements redundancy and cross checks

Paris High Altitude Workshop, 26–28 May 2014

A.Castellina

Energy spectrum

SD (1500 m and infill) and FD provide 4 independent measurements the 4 spectra agree within statistical and systematic uncertainties

A.Castellina

Paris High Altitude Workshop, 26–28 May 2014

8

Mass composition - Xmax

high quality hybrid data set: anti-bias cuts for a direct data-model comparison
need of very high statistics

Mass composition - Xmax

- energy evolution common to all models: <InA> increasing from light to medium
- \Im σ^2_{max} ~1 : the mix is within intermediate nuclei (not p:Fe)
- negative variance within systematics

Mass composition - MPD_{μ}

Mass composition - MPD_{μ}

 $\ensuremath{^{ extsf{w}}}$ novel approach to study the longitudinal distribution of the hadronic component of EAS

e agreement with the conclusion from Xmax (but still compatible with constant comp.)

Solution with the content of the co

Interpreting X_{max} and X^{μ}_{max}

the consistency between the two Xmax can help to constrain hadronic interaction model

Large Scale Anisotropy

Transition galactic/extragal. origin should induce a significant change in their LS angular distribution

* <u>if Galactic at 10¹⁸ eV</u>: %-level modulation (depending on GMF, comp., distr. of sources, ...)

* if extra-gal. at 10^{18} eV: no structure except for a CMB-dipole (~ 0.6 %)

- dipole expected: escape from the Galaxy or extra-gal. CG
- quadrupole expected: sources distributed on galactic or super galactic plane or rotation of Galaxy could produce anisotropy by virtue of moving magnetic field (i.e. GMF could transform the extra-gal CG dipole into a quadrupole)

First harmonic modulations are small

- Rayleigh analysis to accounts for spurious modulation (experimental & atmospheric)
- East-West method (not sensitive to these effects). Need high statistics

Large Scale Anisotropy

The anisotropy is found to be very small (% level)

- © no clear evidence of anisotropy, but 3 points with chance probability <1%
- hint for a smooth transition in phase from 270° below I GeV (Galactic origin?) to 90° above 4 EeV (random phase expected from isotropy)

A/S: Gal CRs at EeV, anis due to their escape by diffusion/drift. A/S = antisymm./symm. halo field

Gal: Gal CRs are galactic at all energies, anisotropy caused by diffusion due to the turbulent component of the GMF C-G Xgal: Compton-Getting effect for extragal. CRs (motion of our Galaxy wrt the frame of extragal. isotropy,CMB)

Upper limits on equatorial dipole

exclusion of models with antisymmetric halo magnetic field >0.25 EeV
for exclusion of Galactic model at few EeV

Dipolar and quadrupolar patterns

Generic estimates of the amplitudes expected from stationary galactic sources

- GMF = regular (BSS disk field and anti-symmetric halo field) + turbulent field (according to a Kolmogorov power spectrum)
- these upper limits challenge an origin of CRs from galactic stationary sources distributed in the disk and emitting predominantly light particles in all directions at EeV energy ranges (unless the strength of the GMF is much higher than in the picture used here)

Point source searches

Centaurus-A

- Excess of events from a regione close to CenA (l=-50.5°, b=19.4°)
- I9 events in a 24° circular window vs 7.6 expected
- Statest: max departure from isotropy ≥ that of observed events only in 4% of isotropic realizations

Paris High Altitude Workshop, 26–28 May 2014

VCV Catalog

Generation of correlating events (33 ± 5) %
 Generation of the content in protons at UHE is small:
 consistency with X_{max} indication,
 exhaustion of sources?

Photons

to set limits on top-down mechanisms
 to search for GZK photons
 to fix the maximum photon fraction in the primary flux

Exploit observable differencies between ${\mathfrak Z}$ and hadrons

- 🖉 g EAS develop deeper in atmosphere: larger Xmax
- SEAS look young: larger rise time, smaller radius of curvature

Diffuse photons

- exotic models disfavoured down to I EeV
 GZK region within reach in the near future
- \bigcirc the primary composition is truly barionic

EeV Photon point sources

Protons near the ankle produce photons ~ I EeV : can we find them?
 as the energy flux in TeV & rays exceeds I eV cm⁻² s⁻¹ for some sources (CenA, Galactic center) with this energy spectrum, we expect similar flux at EeV (as sources with spectrum ~ E⁻², put the same energy flux/decade)

No point sources of EeV photons is found. For $d\phi/dE \sim E^{-2}$ $\phi_0 < 0.25 \text{ eV cm}^{-2} \text{ s}^{-1}$ well below expectations

No Galactic sources of protons IF --> they are not transient --> they do not emit in jets towards Earth --> they are too faint What did we learn from Auger ?

9	Spectrum	The ankle is clearly seen at 10 ^{18.72} eV	10%	18.0 1
		The cut-off is established (>20 σ), $E_{1/2} = 10^{19.63} \text{ eV}$	~⊑ ⁸⁰⁰ F	
0		The composition gets heavier for increasing energy	up 780	Auger 2013 pre
Compo	position	No primary photons: exclusion of top-down models	× 700 740	1º
		No photons/neutrons form Galactic sources	720	
		Neutrinos constraints on astrophisical models	700	HE7
Δ	in almostra	No LSA above 1-2%	680 <u>E</u>	10 ¹⁸
An	isotropy	exclusion of antisymmetric models of Galactic MF	180	[
		Hints for Gal-XGal transition from dipole phase	90	-
		Point source anisotropy above 55 EeV (3 σ level)	o [deg]	
Ha	dronic	smooth growth of the pp cross section (meas.57 TeV)	£ 270	
inte	eractions	muons put constraints to the hadronic interaction models		
			180	- Indiana Tan

Paris High Altitude Workshop, 26–28 May 2014

A.Castellina

 $s^{3}I(E) = v^{2} km^{-2} sr^{-1} yr$ 103 $log_{10}(E/eV)$ 19.5 8.5 20.0 20.5 minary 1019 10 E [eV] 0.01 0.1 10 Energy [EeV]

Questions and answers from Auger results

protons		Is there a proton component (~10%) at UHE? above 55 EeV, some indication for anisotropy Are there Galactic protons at the ankle ? the composition is light, but we do not have anisotropy >few %; extreme assumptions on Galactic magnetic fields could reconcile the No evidence from n and & flux limits, but sources could be transient	he two info it, or faint		
cut-off	cut-off the cut-off energy E _{1/2} is lower than expected from GZK composition is mixed and getting heavier future detection of cosmological photons and neutrinos as a direct evidence				
hadronic interactions		Can we get information on hadronic interactions at UHE ? smooth grow of the pp cross section, measured at 57 TeV muon content of EAS			
other info		info Are UHECR produced in top-down mechanisms? excluded from photon and neutrino limits			
Vulcano Workshop, 18-24 May 2014 A.Castellina 24					

Astrophysical scenarios

photo-disintegration	sources accelerate nuclei to a maximum energy light elements are fragments of heavier nuclei cut-off: energy loss processes of nuclei (photo-disintegration) light elements appear at E shifted by m _{daughter} /m _{parent} N-Si nuclei in the sources, no protons	
maximum energy	sources accelerate nuclei to a maximum energy $\propto 2$ composition in the source similar to the Galactic one cut-off: E_{max} reached in the source composition getting heavier for increasing energy protons at the ankle are extragalactic, no GZK 3 or v	
proton dominance	the all particle flux consists of extragalactic protons the source has a cut-off energy cut-off: energy loss processes for protons (pion-photoproduction ankle due to pair production of protons on CMB new physics to explain heavier composition at UHE	n)

- hard spectra: acceleration in rapidly rotating neutron stars, accretion disks with unipolar induction, etc.
 (high metallicity)
- good fit to Auger only above 5 EeV. Below
 - Galactic spectrum extending up to 5 EeV
 - BUT if light, disfavoured by anisotropy results, if heavy by X_{\max}
 - extraGal. (ad-hoc) sources injecting p, He. In agreement with Kascade-Grande and IceTop results BUT too much Fe at I EeV wrt Xmax result

The science case for an upgrade beyond 2015

the origin of the cut-off : GZK or E_{\max} ?

the proton component at UHE: what is its fraction?

the hadronic interactions : particle physics beyond accelerators ?

operate Auger until 2023 (x 3 statistics) with improved detector composition sensitivity : MUONS

Discrimination of muons vs EM component in SD will give

- composition info in the cut-off region
- increase our knowledge in the ankle region
- help in disentangling composition and hadronic interactions systematics

The science case for an upgrade beyond 2015

Are hadr.int.models failing in predicting the fraction of E_{EM} ? $N_{\mu} \longrightarrow m$, f_{EM} , A $X_{max} \longrightarrow \sigma$, κ , m, A We can distinguish different primaries if N_{μ} only affected by shower-to-shower fluctuations

UHE physics case is strong Auger is the biggest running observatory

- a very fruitful collaboration is going on between Auger and TA
- the results from the current and upgraded observatories will guide the proposed or planned future experiments

Backup slides

Muon deficit in simulations

The p-Air cross section

Distribution of the depth of first interaction

$$\frac{\mathrm{d}p}{\mathrm{d}X_1} = \frac{1}{\lambda_{\mathrm{p-air}}} \mathrm{e}^{-X_1/\lambda_{\mathrm{p-air}}}.$$

Mean <X₁> and its shower-to-shower fluctuations directly linked to the p-Air cross section:

Paris High Altitude Workshop, 26–28 May 2014

A.Castellina

	Auger SD			Auger hybrid	
	1500 m vertical	1500 m inclined	750 m vertical		
Data taking period	01/2004 - 12/2012	01/2004 - 12/2012	08/2008 - 12/2012	11/2005 - 12/2012	
Exposure [km ² sr yr]	31645 ± 950	8027 ± 240	79 ± 4	-	
Zenith angles [°]	0 - 60	62 - 80	0 - 55	0 - 60	
Threshold energy $E_{\rm eff}$ [eV]	3×10^{18}	4×10^{18}	3×10^{17}	10 ¹⁸	
No. of events $(E > E_{eff})$	82318	11074	29585	11155	
No. of events (golden hybrids)	1475	175	414	-	
Energy calibration (A) [EeV]	0.190 ± 0.005	5.61 ± 0.1	$(1.21 \pm 0.07) \cdot 10^{-2}$	-	
Energy calibration (B)	1.025 ± 0.007	0.985 ± 0.02	1.03 ± 0.02	-	

Table 1: Summary of the experimental parameters describing data of the different measurements at the Pierre Auger Observatory.

$\log_{10}(E/eV)$	$\left. dN/dt \right _{infill}$	$\left. dN/dt \right _{SD}$	$N _{\mathrm{infill}}$	$N _{SD}$	
2	$[yr^{-1}]$	$[yr^{-1}]$	[2017-2023]	[2017-2023]	
17.5	11500	-	80700	-	
18.0	900	-	6400	-	
18.5	80	12000	530	83200	
19.0	8	1500	50	10200	
19.5	~1	100	7	700	uborade
19.8	-	9	-	60	
20.0	-	~1	-	~9	

Neutrinos

• Earth-skimming: $v_c CC (90-95^\circ)$

Neutrinos in Auger:

• down-going : all flavours CC&NC

Neutrinos

- \bigcirc constraints on astrophysical source models (AGN v)
- Suger limit below Waxmann-Bahcall upper limit
- GZK region within reach in the near future

If the 2 neutrino events from lceCube are compatibile with an E^{-2} flux with normalized to $E_v^2 F_v = 1.2 \ 10^{-8} \text{ GeV}$ cm⁻²s⁻¹ sr⁻¹ : extension of this upper limit to the flux at 10^{20} eV excluded (2.2 events expected, 0 detected)

Comparison of parameters

2011 spectral parameters

$$\begin{split} \log_{10}(E_{\rm a}/{\rm eV}) &= 18.62 \pm 0.01 \\ \gamma_1 &= 3.27 \pm 0.01 \\ \gamma_2 &= 2.63 \pm 0.02 \\ \log_{10}(E_{1/2}/{\rm eV}) &= 19.63 \pm 0.02 \\ \log_{10}W_c &= 0.15 \pm 0.02 \end{split}$$

2013 spectral parameters $log_{10}(E_a/eV) = 18.72 \pm 0.01$ $\gamma_1 = 3.23 \pm 0.01$ $\gamma_2 = 2.63 \pm 0.02$ $log_{10}(E_{1/2}/eV) = 19.63 \pm 0.01$ $log_{10} W_c = 0.15 \pm 0.01$

Calibration

Angular resolution

SD Events better than 1° for \geq 6 stations (>10 EeV)

Hybrid events: **0.6**⁰ after correction for the true shower geometry

Atmospheric monitoring

Lidar

Atmospheric profiling, "shoot-the-shower" for atm. measurements along the shower path

Central Laser Facility Atmospheric monitoring, timing and calibration Vertical optical depth Relative timing between FDs and between FD-SD

Balloon borne

- measure T,P, humidity...
- measure of the deviation of g/cm² with respect to US std atmosphere

