5th Workshop for Air Shower Detection at High Altitudes

Design Highlights of the LHAASO Project

Huihai He, IHEP, CAS on behalf of the LHAASO collaboration 2014-5-27

Outline

- Introduction
- LHAASO detectors
- LHAASO electronics
- "Trigger-less" DAQ

Major scientific goals

- GAMMA RAY ASTRONOMY
 - Searching for GCR sources by measuring SED above 30TeV
 - Survey in the Northern hemisphere for gamma ray sources above 100GeV
- COSMIC RAY PHYSICS
 - Energy spectrum for individual compositions below 1EeV
- •

Measurement of air showers at high altitude

LHAASO

- Sensitivity: 1%I_{Crab}@100TeV
 - 1000/year/km²÷100=10/year/km²
 Background free, >2000 km²hr/year (CTA: 100 km²hr/year)
 γ/p discrimination power:10⁻⁴-10⁻⁵ (IACT、HAWC: 10⁻²)
- Wide field of view
- Energy resolution: 20%@100TeV

ED Specifications

Item	Value
Effective area	1 m ²
Thickness of tiles	2 cm
Number of WLS fibers	32/tile×4 tile
Detection efficiency (> 5 MeV)	>95%
Dynamic range	1-10,000 particles
Time resolution	< 2 ns
Particle counting resolution	25% @ 1 particle 5% @ 10,000 particles
Aging (<20%)	>10 years
Spacing	15 m
Total number of detectors	5635
15 m 15 m	~ لے ک 15 m

Electromagnetic Particle Detector (ED)

- Uniformity for 5635 units: < 10%
- Stability with ±30°C: <5%
- Aging in 10 years: <20%

MD Specifications

Item	Value
Area	36 m²
Water Depth	1.2 m
Molasses overburden	2.5 m
Water transparency (att. len.)	> 30 m (400 nm)
Reflection coefficient	>95%
Dynamic range	1-10,000 particles
Time resolution	<10 ns
Particle counting resolution	25% @ 1 particle 5% @ 10,000 particles
Aging (<20%)	>10 years
	$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

A large area (pure) muon detector

- Muon detection efficiency
- N_γ:N_e:N_μ~1:5%:0.1%, (>1GeV, N_μ>> N_γ)

Muon Detector (MD)

Gamma/proton Discrimination - KM2A

nHit	log ₁₀ (E) GeV	Q-factor
20-30	3.60	2.67
30-45	3.87	5.62
45-65	4.12	11.9
65-90	4.35	20.7
90-120	4.55	46.4
120-180	4.76	86.6
180-260	5.03	backgroud free
260-360	5.28	backgroud free
360-500	5.53	backgroud free
500-700	5.82	backgroud free
700-1000	6.11	backgroud free

Gamma/proton Discrimination - WCDA

WCDA Specifications

Item	Value
Cell area	25 m ²
Effective water depth	4 m
Water transparency	> 20 m (400 nm)
Precision of time measurement	0.5 ns
Dynamic range	1-4000 PEs
Time resolution	<2 ns
Charge resolution	40% @ 1 PE 5% @ 4000 PEs
Accuracy of charge calibration	<2%
Accuracy of time calibration	<0.2 ns
Total area	90,000 m ²
Total cells	3600

Hybrid Detection of Extensive Air Showers by LHAASO

LHAASO observables of showers

	Ground-based EAS arrays	Air Cherenkov/Fluorescence Telescopes	
Direction	Space-time	Image (stereo)	Image (stereo)
Core	Lateral distribution	Stereo imaging	Stereo imaging
Energy	Lateral distribution	Cerenkov light, geometry	Longitudinal development
Composition	Lateral distribution, muons (π [±]),	Image, Xmax	Xmax
	particles near the core (n ⁰)		

Resolution for light and heavy compositions

μ -content, Xmax and HE (>30TeV) shower particles

LHAASO detector signals

- LHAASO measures the density, energy and direction of shower secondary particles which emit UV photons through
 - Air (Cherenkov and Fluorescence for WFCTA)
 - Water (Cherenkov for WCDA and KM2A-MD)
 - Scintillating (for KM2A-ED and SCDA)
- PMTs are used to convert the lights to photoelectrons
- All LHAASO detector signals come from PMTs
 - Timing: direction
 - Charge: energy, composition

Basic FEE Design

LHAASO Timing Measurement

- Gamma Ray Astronomy
 - Pointing accuracy: <0.1 deg</p>
 - Timing accuracy: <0.2ns(WCDA)/0.5ns (KM2A)
 - Sensitivity ~ angular resolution
 - time jitter: <0.5ns(WCDA)/1ns(KM2A)
- Over an area of 1km²
- Under high altitude environment
 - Maximum daily temperature variation: 30 deg
 - Annual temperature variation: ±30 deg

1000m coax cable in 30° C change, Δ delay = 15ns!

Time-stamp Synchronization

Time stamps of >7,000 nodes to be aligned <500ps (rms).

Frequency distribution & phase locking

Distribute synchronous ADC clock with <100ps skew.

Traceability & Real-time calibration

Timing delay compensation due to environmental perturbation in hardware in real time.

WR performance

Charge Measurement

 Each array covers a wide energy band, requiring a large dynamic range which is achieve by anode+dynode readout of PMTs.

Charge Measurement

 (KM2A-ED and WFCTA: 500/50MHz FADCbased waveform digitization)

Challenges for electronics

- ♦ High altitude and low air pressure → decreased heat dissipation
- ♦ Large number of channels → increased density, complexity and power consumption
- ♦ Harsh environment and remote location → require stability, reliability and maintainability
- ♦ Design based on IC → simplified design, decreased power consumption, increased reliability

- Compact design
- High stability
- High reliability
- Easy to maintain
- Large number of channels
 - · WFCTA: 1024 channels each
- Heat dissipation at 4300m
 - Air density: 60%
 - Active heat dissipation system

The ASICs can be used to simplify the electronics of LHAASO

Software block & power consumption

Unit	Power Consumption
PARISROC 2 X 2	~ 1.0W
Ethernet Interface	~ 1.1W
FPGA & Peripherals	~ 0.9W
	~ 3.0W (2.98W meas.)

♦ Fully described in VHDL and FSM structure

♦ Resource occupation: < 10% (XS6LX150)</p>

Power consumption: ~ 128 W for 64 clusters without Ethernet Interface (260W budget)

"Triggerless" DAQ ---hybrid measurement of shower

• Triggering, building, (re-construction) and storage by online computers

Data Rate

		WCDA	KM2A
	Single rate(Hz)	50k	ED: 1k MD: 12k
	No. of Channels	3600	ED: 5635 MD: 1221
DAQ-in	Hits in trigger(MHz)	180	5.6
	Pre-Trigger(MB/s)	2160	450
DAQ-out	After-Trigger(MB/s)	300~400	~10

