Recent Highlights from ARGO-YBJ

G. Di Sciascio on behalf of the ARGO-YBJ Collaboration INFN Sezione Roma Tor Vergata
disciascio@roma2.infn.it

Fifth Workshop on Air Shower Detection at High Altitude

Outline

丸 Gamma-Ray Astronomy

- First Northern sky survey $\left(-10^{\circ}<\delta<70^{\circ}\right)$ at 0.25 Crab Units
- Study of extended sources

\star Cosmic Ray Physics

- CR Light component (p+He) Energy Spectrum (3 TeV - 5 PeV)
- Elemental composition approaching the knee: the 'proton' knee

The ARGO-YBJ experiment

Longitude $90^{\circ} 31^{\prime} 50$ " East
Latitude $30^{\circ} \mathbf{0 6}{ }^{\prime} 38$ " North
90 Km North from Lhasa (Tibet)

4300 m above the sea level $\sim 600 \mathrm{~g} / \mathrm{cm}^{2}$

The Yangbajing Cosmic Ray Laboratory

The basic concepts

...for an unconventional air shower detector

* HIGH ALTITUDE SITE
(YBJ - Tibet 4300 m asl - $600 \mathrm{~g} / \mathrm{cm} 2$)
FULL COVERAGE
(RPC technology, 92\% covering factor)
HIGH SEGMENTATION OF THE READOUT
(small space-time pixels)
Space pixels: 146,880 strips ($7 \times 62 \mathrm{~cm}^{2}$)
Time pixels: 18,360 pads ($56 \times 62 \mathrm{~cm}^{2}$)
... in order to
- image the shower front with unprecedented details
- get an energy threshold of a few hundreds of GeV

The RPC analog readout

...extending the dynamical range up to PeV

4 different gain scales used to cover a wide range in particle density:

$$
\begin{aligned}
& \rho_{\text {max-strip }} \approx 20 \text { particles } / \mathrm{m}^{2} \\
& \rho_{\text {max-analog }} \approx 10^{4} \text { particles } / \mathrm{m}^{2}
\end{aligned}
$$

- Extend the covered energy range
- Access the LDF in the shower core
- Sensitivity to primary mass

Big Pads (analog)

ARGO-YBJ (154 CL) - Event 242653

- Info/checks on Hadronic Interactions

The ARGO-YBJ layout

The ARGO-YBJ Collaboration

Collaboration Institutions:
Chinese Academy of Sciences (CAS) Istituto Nazionale di Fisica Nucleare (INFN)

The birth of an idea

Detection of small size air showers at high altitude: the expected

performances of an RPC's carpet

B. D'Ettorre Piazzoli ${ }^{(1)}$, G. Di Sciascio ${ }^{\text {(i) }}$, E. Pompei ${ }^{(2)}$, A. Surdo ${ }^{(3)}$ Experimental set-up

An RPC's carpet of $120 \times 120 \mathrm{~m}^{2}$ has been considered with a 95% active area. Moreover a 95% efficiency has been take into account. Each RPC $\left(1 \times 2 m^{2}\right)$ is equipped with a read-out system of 3 cm wide, 50 cm long strips. Signals from the strips are OR-ed in order to get the time of the first particle hitting each $50 \times$ $50 \mathrm{~cm}^{2}$ 'pad'. This time is smeared out with the detector response and assigned

Conclusions

Preliminary calculations indicate that an RPC's carpet operating at high altitude could achieve excellent performances in detecting air showers initiated by photons of energy $\geq 300 \mathrm{GeV}$. At this energy the minimum detectable integral flux at 4σ level in 1 yr of data taking is expected to be about $6 \cdot 10^{-11} \cdot\left(\frac{\psi(70 \%)}{\left.0.6^{\circ}\right)}\right) \cdot \frac{1}{Q} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, comparable to fluxes expected from extragalactic sources. Here Q is a rejection factor resulting

THE FIRST

INTERNATIONAL SYMPOSIUM
ON COSMIC RAY PHYSICS

IN TIBET

August $12-17,1994$ LHASA, CHINA

$$
\text { HAWC: } \approx 140 \times 140 \mathrm{~m}^{2}
$$

The main stages

- ARGO proposal (1996)
- Approval of a successfull test in Tibet (ARGO-TEST, 1997-1998)
- Approval of the ARGO-YBJ experiment (1999)
- Inauguration of the ARGO-YBJ laboratory (June 2001)
- Central carpet in data taking (2006)
- Full layout in stable data taking (2007)
- End/Stop data taking: January 2013

Astropartide Physiss 17 (2002) 151-165
Astroparticle Physics

Results from the ARGO-YBJ test experiment ARGO-YBJ Collaboration
C. Bacci ${ }^{\text {a }}$, K.Z. Bao ${ }^{\text {b }}$, F. Barone ${ }^{\text {c }}$, B. Bartoli ${ }^{\text {c }}$, P. Bernardini ${ }^{\text {d }}$, S. Bussino ${ }^{\text {a }}$, E. Calloni ${ }^{\text {e }}$, B.Y. Cao $^{\text {e }}$, R. Cardarelli ${ }^{\mathrm{f}}$, S. Catalanotti ${ }^{\text {e }}$, S. Cavaliere ${ }^{\text {c }}$, F. Cesaroni ${ }^{\text {d }}$, p Cretic Nanzenoliohirs R N'Fttorre Diamolic M Ne Vincenzia

Status and performance

- In observation since July 2006 (commissioning phase)
- Stable data taking since November 2007
- End/Stop data taking: January 2013
- Average duty cycle $\sim 87 \%$
- Trigger rate $\sim 3.5 \mathrm{kHz}$ @ 20 pad threshold
- N. recorded events: $\approx 5 \cdot 10^{11}$ from 100 GeV to 10 PeV
- 100 TB/year data

Intrinsic Trigger Rate stability 0.5\%
(after corrections for T/p effects)

G. Di Sciascio, 5th Workshop of EAS detection at high altitude, Paris (France), '26-'28 May 2014

Outline

太 Gamma-Ray Astronomy

- First Northern sky survey $\left(-10^{\circ}<\delta<70^{\circ}\right)$ at 0.25 Crab Units
- Study of extended sources

\star Cosmic Ray Physics

- CR Light component (p+He) Energy Spectrum (3 TeV - 5 P
- Elemental composition approaching the knee:

Cosmic Rays and γ-Ray Astronomy connection

\star Hadro-production (CR sources)

$$
\mathrm{p}+\mathrm{p} / \gamma \Rightarrow \mathrm{n} \stackrel{\left(\pi^{+}+\pi^{-}+\pi^{0}\right)+\mathrm{h}}{\longrightarrow} \xrightarrow{\square} \boldsymbol{y} \text { Gamma-Ray Astronomy }
$$

> CRs, photons and neutrinos strongly correlated
> ONLY charged CRs observed at E > $10^{14} \mathrm{eV}$ so far ! Recent observations of PeV neutrinos by Icecube
\star Electro-production (Inverse Compton) $\mathrm{e}+\gamma \Rightarrow \mathrm{e}^{\prime}+\gamma^{\prime}$

SSC model: photons radiated by high energy (10 ${ }^{15} \mathrm{eV}$)
electrons boosted by the same electrons
Gammas (and neutrinos) point back to their sources (SNR, PWN, BS, AGN ..)

Gamma-Ray Astronomy with ARGO-YBJ

- Energy threshold: few hundreds of GeV \rightarrow Overlaps with Cherenkov detectors
- Large duty cycle: 86\%
- Large field of view: ~2 sr
- Declination band from -10° to 70°
- Integrated sensitivity in 5 y at $\sim 1 \mathrm{TeV}$:
0.25 Crab for dec $15^{\circ}-45^{\circ}$

Crab Nebula 5 years data

$$
\frac{\frac{\mathrm{dN}}{\mathrm{dE}}=\left(2.94 \pm 0.20_{\text {stat }}\right) \times 10^{-11}\left(\frac{E}{1 \mathrm{TeV}}\right)^{\left(-2.67 \pm 0.06_{\text {sut }}\right)} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{TeV}^{-1}}{(0.5-10) \mathrm{TeV}}
$$

Sensitivity to gamma point sources

EAS-array: 5 s.d. in 1 year
Cherenkov: 5 s.d. in 50 h on source

ARGO-YBJ Sky Survey at 1 TeV

- Integrated sensitivity in 5 y at $\sim 1 \mathrm{TeV}: 0.25$ Crab for dec $15^{\circ}-45^{\circ}$

MGRO J1908+063
HESS J1841-055

ARGO-YBJ 5-years Survey of Inner Galactic Plane

Detected Sources

Fig. 4: Average 95% C.L. flux upper limit at energy above 500 GeV , averaged on the right ascension direction, as a function of declinations. Different curves indicate sources with different power-law spectral indices $-2.0,-2.6$ and -3.0 . The Crab unit is $5.77 \times 10^{-11} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.

Table 2. Location of the excess regions

ARGO-YBJ Name	Ra (deg)	Dec (deg)	l (deg)	b (deg)	S $(\mathrm{s} . \mathrm{d})$.	Associated TeV Source
ARGO J0409-0627	62.35	-6.45	198.51	-38.73	4.8	
ARGO J0535+2203	83.75	22.05	184.59	-5.67	20.8	Crab Nebula
ARGO J1105+3821	166.25	38.35	179.43	65.09	14.1	Mrk 421
ARGO J1654+3945	253.55	39.75	63.59	38.80	9.4	Mrk 501
ARGO J1839-0627	279.95	-6.45	25.87	-0.36	6.0	HESS J1841-055
ARGO J1907+0627	286.95	6.45	40.53	-0.68	5.3	HESS J1908+063
ARGO J1910+0720	287.65	7.35	41.65	-0.88	4.3	
ARGO J1912+1026	288.05	10.45	44.59	0.20	4.2	HESS J1912+101
ARGO J2021+4038	305.25	40.65	78.34	2.28	4.3	VER J2019+407
ARGO J2031+4157	307.95	41.95	80.58	1.38	6.1	MGRO J2031+41
						TeV J2032+4130
ARGO J1841-0332	280.25	-3.55	28.58	0.70	4.2	HESS J1843-033

Why gamma-ray extended sources ?

- TeV gamma-ray extended sources an important tool to investigate the sources of cosmic rays.
- The observed degree-scale extended emission could be produced by high-energy cosmic rays escaping from the source and diffusing in the interstellar medium. The gamma-ray emission should result from the interaction of these cosmic rays with the ISM particles.
- 80% of TeV galactic gamma ray sources are extended.
- Many of them are still unidentified.
- To study degree-scale sources we need instruments with a large field of view and able to correctly evaluate the cosmic ray background over a large solid angle
- Sensitivity to an extended source is relatively better for an EAS than an IACT because angular resolution is not as important

$$
S_{\text {extended }} \approx S_{\text {point }} \frac{\sigma_{\text {source }}}{\sigma_{\text {detector }}}
$$

The Cygnus Region

Very important region populated by many unidentified strong sources

- The brightest diffuse γ-rays source in the northern hemisphere
- 9 supernova remnants
- >20 Wolf-Rayet starts
- 6 OB associations
- shocked gas

Natural site for cosmic-ray acceleration
\star Fermi data (1-100 GeV):
A cocoon of freshly accelerated CRs ?

Milagro detected 2 sources at 20 TeV
\checkmark MGRO J2019+37 (12.4 б)
\checkmark MGRO J2031+41 (7.6 б)
Both consistent with Fermi source locations

Ł Complex emission observed by VERITAS consistent with location of MGRO J2019+37

The Cygnus Region by ARGO-YBJ

ApJL 745 (2012) L22

A cocoon of freshly accelerated cosmic rays by hadronic mechanism ?

The TeV counterpart of the Fermi Cocoon

\checkmark Insufficient exposure above 5 TeV ?
\checkmark Variability?

The Fermi Cocoon

NO signal from the MGRO J2019+37 below 10 TeV

G. Di Sciascio, 5th Workshop of EAS detection at high altitude, Paris (France), 26-28 May 2014

Observation of extended sources with ARGO-YBJ

The Fermi Cocoon

ApJ submitted

Comments on extended sources

- CRAB
- MGRO J2031+41
- MGRO J1908+06
- HESS J1841-055
point source extended extended extended
flux agrees with IACTs flux $\sim 10 \times$ IACTs flux $\sim 4 \times$ IACTs flux ~ 3 X IACTs

Systematic disagreement for extended sources ! ARGO-YBJ (and MILAGRO) measure higher fluxes

ARGO-YBJ Coll., ApJ 767 (2013) 99

Possible systematics in ARGO-YBJ

- CR background evaluation: checked with the distribution of the excesses (Gauss with $s=1$)
- Pointing accuracy (at 0.1° level checked with the Moon Shadow)
- Error in energy scale $<13 \%$
- Contribution from the diffuse emission of the Galactic plane < 15\%

Overall systematics on the flux < 30\%

*The discrepancy could origin from the different techniques used in the background estimation for extended sources.
\star Maybe the extended excess is due to the contribution of different sources

Outline

* Gamma-Ray Astronomy
- First Northern sky survey $\left(-10^{\circ}<\delta<70^{\circ}\right)$ at 0.25 Crab Units
- Study of extended sources
* Cosmic Ray Physics
- CR Light component (p+He) Energy Spectrum (3 TeV - 5 PeV)
- Elemental composition approaching the knee: the 'proton’ knee

Galactic Cosmic Rays

- CRs below $10^{17} \mathrm{eV}$ are predominantly galactic.
- The bulk of CR is produced by shock acceleration in SN explosions.
- Diffusion of accelerated CRs through non-uniform, nonhomogeneous ISM.
- Galactic CRs are scrambled by galactic magnetic field
 over very long time.

The main feature: the 'knee' in the all-particle spectrum

Different models to explain the 'knee' and different signature...

- Acceleration in SNRs:
finite lifetime of shock $E_{\max } Z \cdot 10^{15} \mathrm{eV}$
- Diffusion process:
probability of escape from Galaxy $=f(Z)$
- Eknee \propto Z
- No anisotropy change
- Eknee \propto Z
- Anisotropy $\propto E^{\delta}$
- Interaction with bckg particles: Photo-disintegration - interaction with in galactic halo etc.
- Change in particle interaction

Key elements: mass composition and anisotropy

Approaching the knee

How well do we know the structure of the primary spectrum around the knee $\left(10^{14}-10^{16} \mathrm{eV}\right)$?

The standard model:

$$
E_{\max }(\text { iron })=26 \cdot E_{\max }(\text { proton })
$$

- Rigidity-dependent structure (Peters cycle): cut-offs at energies proportional to the nuclear charge $E_{Z}=Z \cdot 4.5 \mathrm{PeV}$
- The sum of the flux of all elements with their individual cut-offs makes up the all-particle spectrum.
- Not only does the spectrum become steeper due to such a cutoff but also heavier.

Experimental results conflicting

Measurement of the CR spectrum

- Measurement of the CR energy spectrum (all-particle and light component) in the energy range few TeV - 5 PeV by ARGO-YBJ with different 'eyes'
- 'Digital readout’ (based on strip multiplicity) below 200 TeV
- 'Analog readout' (based on the shower core density) up to 10 PeV
- Hybrid measurement with a Wide Field of view Cherenkov Telescope 200 TeV - PeV \rightarrow talk by Cao Zhen
- Working at high altitude (4000 m as I):

1. p and Fe produce showers with similar size
2. Small fluctuations: shower maximum
3. Low energy threshold: overposition with direct measurements

(p+He) spectrum below 300 TeV : data selection

Digital readout: strip multiplicity

Data collected between Jan. 2008 and Dec. $2012 \approx 8 \times 10^{10}$ high quality events

- $M \leq 50,000$
- Zenith Angle $\leq 35^{\circ}$
- Highest density cluster in $40 \times 40 \mathrm{~m}^{2}$

Shower size distribution on the central carpet, M (strip multiplicity)

Light Component ($\mathrm{p}+\mathrm{He}$) selection:

$$
\rho_{\mathrm{A} 20}>\rho_{\mathrm{A} 42}
$$

A20 $=20$ innermost clusters
A42 $=42$ outermost clusters

Rconstructed shower core position

Light component spectrum

2010

2009

2011

G. Di Sciascio, 5th Workshop of EAS detection at high altitude, Paris (France), 26-28 May

The light-component spectrum (3-300 TeV)

Measurement of the light-component ($\mathrm{p}+\mathrm{He}$) CR spectrum in the energy region $(3-300)$ TeV via a Bayesian unfolding procedure

ARGO-YBJ and AMS-02 (ICRC13)

Extending the energy range

To extend the energy range up to 10 PeV we use different eyes:

* ARGO-YBJ Analog Readout
* Wide Field of view Cherenkov Telescope (WFCTA)
- $5 \mathrm{~m}^{2}$ spherical mirror
- 16×16 PMT array
- pixel size 1°
- FOV: $14^{\circ} \times 14^{\circ}$
- Elevation angle: 60°

...to performe 2 different analysis:
* ARGO-YBJ Analog Readout alone
* Hybrid measurement ARGO-YBJ/WFCTA

Talk by Zhen Cao

Intrinsic linearity: test at the BTF facility

Linearity of the RPC@BTF

 in INFN Frascati Lab:- electrons (or positrons)
- $E=25-750 \mathrm{MeV}$ (0.5% resolution)
- <N>=1 $\div 10^{8}$ particles/pulse
- 10 ns pulses, 1-49 Hz
- beam spot uniform on $3 \times 5 \mathrm{~cm}$
\rightarrow Linearity up to $\approx 2 \cdot 10^{4}$ particle $/ \mathrm{m}^{2}$

Astroparticle Physics submitted

Performance evaluation

4 different gain scales used to cover a wide range in particle density:
$\rho_{\text {max-strip }} \approx 20$ particles $/ \mathrm{m}^{2}$
$\rho_{\text {max-analog }} \approx 10^{4}$ particles $/ \mathrm{m}^{2}$

4 data sample:
p: $10 \rightarrow 10^{4} \mathrm{part} / \mathrm{m}^{2}$
Event selection:

- Core reconstructed in a fiducial area of $2400 \mathrm{~m}^{2}$
- Zenith angle $<15^{\circ}$

Good overlap between 4 scales with the maximum density of the showers spanning over three decades

Absolute comparison Data - MonteCarlo

J.R. Horandel , Astrop. Phys. 19 (2003) 193

Event selection:
\star Core reconstructed in a fiducial area of $2400 \mathrm{~m}^{2}$
\star Zenith angle < 15°
Differential rate of Pmax, shower core density, for 2 gain scales

Pmax spans over two and half decades, while the event frequency runs over five decades.

ARGO-YBJ + WFCTA

ARGO-YBJ: lateral distribution In the core region \rightarrow mass sensitive

* Cherenkov telescope: longitudinal information Hillas parameters \rightarrow mass sensitive Better energy resolution
- angular resolution: 0.2°
- shower core position resolution: 2 m

G. Di Sciascio, 5th Workshop of EAS detection at high altitude, Paris (France), 26-28 May 2014

Hybrid observation data set

- Period
- Dec $2010 \rightarrow$ Feb. 2012
- Good wheater: 728,000 sec
- Criteria for reconstruction
- Shower cores well inside the ARGO-YBJ central carpet
- Cherenkov images well contained in the telescope, i.e. space angle with respect to the telescope axis $<6^{\circ}$
- Number of fired PMTs ≥ 6
- Cherenkov image cleaning
- Single channel threshold: $\mathrm{S} / \mathrm{N}>3.5$.
- Arrival time: all triggered pixels in a window of $\Delta t=240$ ns.
- Isolated pixels rejected

8218 events well reconstructed above 100 TeV

Light-component (p+He) selection

- Contamination of heavier component < 5%

Talk by Zhen Cao

- Energy resolution: ~25\%
- Uncertainty : $\sim 25 \%$ on flux

	Proton	Helium	CNO	MgAlSi	Iron	SUM
The initial fractions	20%	20%	20%	20%	20%	100%
The fractions after composi- tion selection	69.1%	25.8%	3.8%	1.1%	0.2%	100%
The selection efficiency	51.0%	19.1%	2.7%	0.8%	0.1%	

The light-component ($\mathrm{p}+\mathrm{He}$) spectrum $(2-700) \mathrm{TeV}$

- CREAM: $\quad 1.09 \times 1.95 \times 10^{-11}(\mathrm{E} / 400 \mathrm{TeV})^{-2.62}$
- ARGO-YBJ: $1.95 \times 10^{-11}(\mathrm{E} / 400 \mathrm{TeV})^{-2.61}$

Single power-law: 2.62 ± 0.01

- Hybrid: $0.92 \times 1.95 \times 10^{-11}(\mathrm{E} / 400 \mathrm{TeV})^{-2.63}$

HE-CR: ICRC2013 Spectra

Approaching the all-particle knee

We modified the selection criteria to increase the statistics above 700 TeV with tolerable contamination from heavier nuclei.

The aperture increases by a factor of 2.4 and the number of $(\mathrm{p}+\mathrm{He})$ events increases from 490 to 1162 above 200 TeV . The contamination increases from 3% to 7% below 700 TeV and the purity worsens from 98% to 93%.

Talk by Zhen Cao

Analysis with ARGO-YBJ analog data

Analysis based on the $\mathrm{N}_{\mathrm{p}}{ }^{8 m}$ parameter: the number of particle within 8 m from the shower core position.
This truncated size is

- well correlated with primary energy
- not biased by finite detector effects
- weakly affected by shower fluctuations

Look for information on the shower age in order to have a mass independent energy estimator.

$$
\rho_{N K G}^{\prime}=A \cdot\left(\frac{r}{r_{0}}\right)^{s^{\prime}-2} \cdot\left(1+\frac{r}{r_{0}}\right)^{s^{\prime}-4.5} \quad \mathrm{R}_{0}=30 \mathrm{~m}
$$

s^{\prime} is NOT the shower age. It is correlated to it.

Assume an exponential absorption after the shower maximum. Get the correct signal at maximum (Np8max) by using Np8 and s' measurements for each event.

$$
N_{p 8 \max } \approx N_{p 8} \cdot e^{\frac{h_{0} \sec \theta-X_{\max }\left(s^{\prime}\right)}{\lambda_{a b s}}}
$$

Also checks with Gaisser-Hillas profile

The LDF slope s' is $\left\langle X_{\text {max }}\right\rangle$
estimator mass-independent

Finding the best $\lambda_{\text {abs }}$ parameter

Results from the ARGD-YBJ test experiment
Astroparticle Physids 17 (2002) 151-165
According to numerous ineasurements from sea level to an altitude of about $\not \mathrm{km}, \Lambda_{\text {att }}$ lies between $120 \mathrm{~g} / \mathrm{cm}^{2}$ and $150 \mathrm{~g} / \mathrm{cm}^{2}$ fo showers with moderate size $[15,19]$. Thus the exponent of the angular
$(\sec \theta-1)]$ law. The patameter α is Iound to be 4.88 ± 0.45, so that $\Lambda_{\mathrm{att}}=(124 \pm 11) \mathrm{g} / \mathrm{m}^{2}$, in excellent agreement witt previouc results. For comparison, the value provided by Monte Carlo simulations is 4.11 ± 0.37. For angles greater than

Mass independent energy reconstruction

The measurement of Np8 and the (age correlated) LDF slope allows estimating the truncated size at the shower maximum.

This ensures a mass independent Energy determination.

The shift is simply due to the fact that we are using the truncated size.

All particle spectrum: trigger and selection efficiencies

Systematic uncertainty evaluations

Flux:

Geometrical Aperture : (5 \% in/out contamination) (2.5% angular contamination) $=5.6$ \% Efficiency: (5% from MC samples) ($<10 \%$ efficiency estimation of the mixture) $=5.0-11.2 \%$ Unfolding: 3\%
Hadronic interaction model < 5\%

TOTAL: 8.1\% - 13.8 \%

TOTAL: (conservative) $=14 \%$

Energy scale:

Gain of the analog system: 3.7 \%
Energy calibration: 0.03 in LogE $=6.9 \%$
Hadronic interaction model: 5\%
TOTAL: 9.3 \%
TOTAL: $($ conservative) $=10 \%$

In the following plots an over-conservative $\pm 14 \%$ shaded area has been temporarily drawn on the flux measurements.
Error bars show the statistical uncertainties.

Systematics from hadronic interaction models

The dependence on the adopted hadronic interaction model is small. The differences among the QGSJET-II. 03 and Sibyll-2.1 are within few percent in the explored energy range (no bias due to muon number). All further results shown here were obtained with QGSJET-II.03.

The "all-particle" spectrum by ARGO-YBJ

The "all-particle" spectrum by ARGO-YBJ

- Consistent picture with models and previous measurements
- Overlap with the two gain scales (different data,...)
- Suggest spectral index -2.6 below 1 PeV and -2.8 from 1 to 5 PeV

The light component spectrum by ARGO-YBJ (1)

The Bayesian unfolding method used for the analysis of data below 200 TeV is adapted to the ARGO-YBJ analog data.

- NPmax > 500
- $10^{4}<\mathrm{Np} 8<10^{6}$
- Theta $\leq 35^{\circ}$
- Reconstructed shower core position in a fiducial area $40 \times 40 \mathrm{~m}^{2}$ centered on the central carpet

Selection of the light component: shower topology
Light Component ($\mathrm{p}+\mathrm{He}$) selection:

$$
\rho_{\mathrm{A} 20}>\rho_{\mathrm{A} 42}
$$

A20 $=20$ innermost clusters
A42 $=42$ outermost clusters

The light component spectrum by ARGO-YBJ

The Bayesian unfolding method used for the analysis of data below 200 TeV is adapted to the ARGO-YBJ analog data.

Observation of gradual change of the slope starting around 650 TeV

p and He selection

A simple cut in the plane s' vs Np8
Contamination \geq CNO: $\approx 15 \%$

s' vs Np8 CNO

MC Horandel spectra and normalizations

$\mathrm{p}+\mathrm{He}$: trigger and selection efficiencies

On the efficiency plateau above 200 TeV

The light component spectrum by ARGO-YBJ

Observation of gradual change of the slope starting around 650 TeV

Light component spectrum (3 TeV - 5 PeV) by ARGO-YBJ

Good overposition with the digital readout $<300 \mathrm{TeV}$ Observation of gradual change of the slope starting around 650 TeV

Light component spectrum (3 TeV - 5 PeV) by ARGO-YBJ

Comparison with direct measurements and with Tibet ASgamma (SYBILL)

Other results

The cosmic ray composition between 10^{14} and $10^{16} \mathrm{eV}$
M.A.K. Glasmacher ${ }^{\text {a }}$, M.A. Catanese ${ }^{\mathrm{a}, 1}$, M.C. Chantell ${ }^{\text {b }}$, C.E. Covault ${ }^{\text {b }}$, J.W. Cronin ${ }^{\text {b }}$, B.E. Fick ${ }^{\text {b }}$, L.F. Fortson ${ }^{\text {b,2 }}$, J.W. Fowler ${ }^{\text {b }}$, K.D Green ${ }^{\text {b,3 }}$, D.B. Kieda ${ }^{\text {c }}$, J. Matthews ${ }^{\text {a,4 }}$,
B.J. Newport ${ }^{\text {b,5 }}$, D.F. Nitz ${ }^{\text {a,6 }}$, R.A. Ong ${ }^{\text {b }}$, S. Oser ${ }^{\text {b }}$, D. Sinclair ${ }^{\text {a }}$, J.C. van der Velde ${ }^{\text {a }}$

G. Di Sciascio, 5th Workshop of EAS detection at high altitude, Paris (France), 26-28 May 2014

The overall picture

G. Di Sciascio, 5th Workshop of EAS detection at high altitude, Paris (France), 26-28 May 2014

Conclusions

The ARGO-YBJ detector exploiting the full coverage approach and the high segmentation of the readout is imaging the front of atmospheric showers with unprecedented resolution and detail.

The digital and analog readout are allowing a deep study of the CR physics in the wide TeV PeV energy range.

A number of interesting results have been obtained

- First Northern sky survey $\left(-10^{\circ}<\delta<70^{\circ}\right)$ at 0.25 Crab Units.
- Observed TeV gamma-ray emission from 6 sources above 5 s.d.
- Detailed study of flaring and extedend TeV gamma-ray sources
- Measurement of CR energy spectrum (all-particle and light component) up to 5 PeV
- Study of EAS phenomenology up to PeV
- Study of the CR anisotropy at different angular scales
- Measurement of the CR antip/p flux ratio in TeV energy range
- Measurement of the p-air and p-p cross sections up to 100 TeV
- Detailed study of the Sun shadow in correlation with the solar activity

Backup slides

ARGO-YBJ + WFCTA: p+He

