Cosmic-ray anisotropy with the HAWC Observatory

Daniel Fiorino (Wisconsin-Madison) for the HAWC Collaboration

Motivation

Experiment 1 sky map / year

Theory 2 papers / month

Diffusive propagation of cosmic rays from supernova remnants in the

Anomalous Anisotropies of Cosmic Rays from Turbulent Magnetic Fields Ga

		3.6	A REPORT			
COL	WIPAC & D	Understanding	g TeV-band	cosmic-ray anisotropy		
	The pro scribed as isotropic (М	artin Pohl ^{1,2} , Da	vid Eichler ³		
Pasq	relative ba					
TATAT		The Milagro antic	enter hot spot	s:		
INAI	INAI cosmic rays from the Geminga supernova ?					
E-ma				inna hataaan Aaraa	-1	
		Local Mag	netic Turbulence a	and TeV–PeV Cosmic Ray Anisotrop	oies	
The pro	 INAF-Osservatorio As Largo Enrico Fermi 5, e-mail: salvati@arce INAF-Istituto di Astro Via Ueo La Malfa 153. bblem of small angr 	arofisico di Arcetri 1 I-50125 Firenze, Ita Itri .astro.it fisica Spaziale e Fisi I90146 Palermo. I In the energy ular scale structure in the c	Gwenael Giacinti ^{1,2,3} and Günter Sigl ¹ ¹ II. Institut für Theoretische Physik, Universität Hamburg, Germany ² Institut for fysikk, NTNU, Trondheim, Norvaa and ³ AstroParticle and Cosmology (APC, Paris), France In the energy range from ~ 10 ¹² eV to ~ 10 ¹⁵ eV, the Galactic cosmic ray flux has anisotropies r of 0.1%, and on scales between $\simeq 10^{\circ}$ and ure in the cosmic ray anisotropy data . With a diffusion coefficient inferred from			
L. O'C. DRURY				n approximation predicts a dipolar anisotr scale anisotropies. We demonstrate here	opy that	
Dublin Institute for Advanced Studies School of Cosmic Physics 31 Fitzvilliam Place Dublin 2				arise from the local concrete realization of ring length. We show how such anisotro ithin a for torse of particular from Forth	the pies	
Ireland	opies in TeV Cos	mic Rays Related to the	Sun's Local	P. DISIATI Wisconsin locCule Particle Astrophysics Center (WIPAC) timent of Astronomy, University of Wisconsin, Madison, WI 33706	NDARUEZ	
ctic Enviro	onment from IBE)	C		A. LAZARIAN tunent of Astronomy, University of Wisconsin, Madison, WI 53706 Druft version October 30, 2012		
chwadron <u>1,2,*</u> , I	F. C. Adams ³ , E. R. Christia	an ⁴ , P. Desiati ⁵ , P. Frisch ⁶ , H. O. Funs	en ⁷ , J. R. Jokipii ⁸ ,	ABSTRACT		
cComas ^{2,9} . E. M	loebius ¹ . G.P. Zank ¹⁰	1.000 million (1.000 million (1.000 million)		rgy range from about 10's GeV to several 100's TeV are observe	ad on Ear opears	
Cosmic	Ray Anisotropy	as Signature ² Southw	est Cosmic-ray diffusion	in collisionless plasmas including pressure anisotropy	es mig	

G. Giacinti,^{a,b} M. Kachelrieß,^a D. V. Semikoz,^{c,d} G. Sigl

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

"Institutt for fysikk, NTNU, Trondheim, Norway ^bII. Institut für Theoretische Physik, Universität Hamburg, Germany ^cAstroParticle and Cosmology (APC), Paris, France

² Southwest	Cosmic-ray diffusion in collisionless plasmas including pressure anisotropy	es mig
Arbor, MI 4	M. S. Nakwacki*	n-dipol
tment of As	Instituto de Astronomia y Flora del Especio (IAFE-CONICET), Cuidad Universitaria, Buenos Aino 1428, Argentina	ar role
Science and	J. Peralta-Ramos	articul
ces, Tucson of Alabama	Departmente de Finne, Fandad de Constas Esentas y Mannine, Dunaredad de Buenas Aires and IPBA-CONICET, Cuided Universitaria, Buenas Aires 1188, Argentesa	directi re. Su ropy a

Using HAWC-95 and HAWC-111

June 2013 – February 2014 110 full sidereal days

49 billion events,1.2° median ang. res.,1.8 TeV median energy

HAWC-111 Moon Shadow

Shows features of all angular scales (24 hr background estimation) Smoothed 10° Dipole deficit is consistent with previous observations (1 x 10⁻³ @ ra=200°, dec)

Brightest region sits in region of general excess (ra=60°, dec=-10°)

Power Spectrum of CR Anisotropy

Original (24h bkg est) Subtract multipole fit from 24hr map

For details of the analysis see:

"Observation of Anisotropy in the Arrival Directions of Galactic Cosmic Rays at Multiple Angular Scales with IceCube" <u>http://arxiv.org/pdf/1105.2326.pdf</u> (section 3.3)

Fit dipole+quadrupole+octupole to map for 24-hr background estimation Subtracted fit relative intensity from 24-hr map

6

Fit dipole+quadrupole+octupole to map for 24-hr background estimation Subtracted fit relative intensity from 24-hr map

Regions A, B and C are the only statistically significant excesses (>5σ post-trials)

4 hr background estimation

Shows features ~ 60°. Background fits to any features larger than that

HAWC Bigh Alfinde Water Cherenkov

Small-Scale Anisotropy

Explanations for localized excess?

Local interstellar magnetic fields M. Amenomori et al., Astrophys. Space Sci. Trans. 6, 49 (2010). A.Lazarian and P. Desiati, Astrophys. J. 722, 188 (2010).

Magnetic bottle L. Drury and F. Aharonian, Astropart. Phys. 29, 420(2008).

Dark Matter interpretation P. Harding arXiv:1307.6537

Region C

ARGO HAWC 60° 360° 0° 30 360 -10 -2 0 2 4 6 8 10 -6 -4 -8 relative intensity $[x \ 10^{-4}]$ -0.001 0.001 0.0005 -0.0005 0 IceCube Milagro 360° 0 0° 360° Equatorial 0 2 -3 -2 -1 1 3 1 $\stackrel{0}{\Delta N}$ [×10⁻⁴] -1 -2 relative intensity [$\times 10^{-4}$]

13

Conclusions

HAWC detected 3 regions of cosmic-ray excess

- 2 previously discovered (Region A & B)
- 1 newly discovered (Region C)

Consistency with ARGO observations

Energy-dependent study is coming soon

Begin back-up slides

Reduced Chi-Squared

HAWC Bigh Allitude Water Cherenkov

HEALpix (K.M. Gorski et al., Astrophys. J., 2005, 622, 759) Equal-area binning of the sphere

- "Direct Integration" (R.Atkins et al., Astrophys. J., 2003, 595, 803.) Method to estimate background using the data themselves
- **PolSpice**(I. Szapudi et al. 2001, Astrophys. J., 548, L115)Software to compute power spectrum with partial sky coverage

Local Magnetic Turbulence and PeV-TeV Cosmic-Ray Anisotropies G. Giacinti and G. Sigl, Phys. Rev. Lett. 109, 071101 (2012) <u>arXiv:</u> <u>1111.2536</u>

Anomalous Anisotropies of Cosmic Rays from Turbulent

Magnetic Fields M. Ahlers

Phys. Rev. Lett 112, 021101 (2014) arXiv:1310.5712

Energy-depedent small-scale

Calculation is best tied to strength of dipole

HAWC ≠ 1 full year

Solar dipole contamination

