Results from maging <u>Cherenkov</u> Telescopes

Gernot Maier

ASSOCIATION

The high-energy gamma-ray sky

>2500 sources @ MeV-GeV >500 sources >10 GeV >150 sources >100 GeV

- Interaction of particle, matter, electromagnetic fields in astrophysical environments
- Detailed astrophysics of different source types
- Identification of dark matter
- Searches for physics beyond the standard model

(c) F. Acero & H. Gast

Imaging Cherenkov Telescopes

- measure the Cherenkov light emitted by the shower particles to infer direction and energy of incoming photon
- duty cycle: ~1000h/yr; field of view: 3-5⁰
- excellent angular resolution (~0.03-0.1^o) and energy resolution (15-20%)
- Iarge effective area (>10⁵ m²) and background rejection
- pointed observations and (limited) surveys

Gamma-ray observatories

MAGIC

HAWC

space based: 20 MeV - 300 GeV ground based: 25 GeV - 1 PeV

VERITAS

HIGOR

GII F

Tibet -ASy

ARGO-YBJ LHAASO

H.E.S.S.

FAC

Fermi LAT

ARGO

4

Whipple in 2013

10-m Gamma Ray Reflector operation started in 1968
decommissioned last year
discovery of first TeV source
discovery of first extragalactic TeV source
(positioner in good condition after 45 years!)

MAGIC

- La Palma; Spain
- > two 17m telescopes with 50 GeV threshold
- > upgrade of camera & readout in MAGIC I
 - fast repositioning (<20s/180°)

VERITAS

- southern Arizona
 array of four 12 m Imaging
 several upgrades: T1 move mirror alignment, L2 trage PMTs
- new observation modes for increased temporal coverage
 - ~850 hours of normal operations
 - ~200 hours of moonlight operations (at nominal + reduced HV)
 - ~250 hours of bright moonlight observations with UV filters in front of the cameras

VERITAS

southern Arizona

- array of four 12 m Imaging
- several upgrades: mirror alignment **PMTs**
- new observation modes for increased temporal coverage
 - ~850 hours of normal operations
 - ~200 hours of moonlight operations (at nominal + reduced HV)
 - ~250 hours of bright moonlight observations with UV filters in front of the cameras

19 A 🖓 🖬 🖨

HESS

> Namibia

array of four 12 m telescopes
addition of a 28 m telescope

614m² mirror area, 36m focal length

12 m telescope camera upgrades

H.E.S.S. collaboration

HESS

Namibia

> array of four 12 m telescopes> addition of a 28 m telescope

614m² mirror area, 36m focal length

12 m telescope camera upgrades

Differential Flux sensitivity

HAWC: 24/7 duty cycle; IACTS: 1200 hrs/year

The high-energy gamma-ray sky

Fermi LAT 3-years sky map > 10 GeV

supernova remnants, pulsars, pulsar wind nebulae, binary systems, massive star clusters, starburst galaxies, active galactic nuclei (mostly blazars), gamma-ray bursts, nova, diffuse, dark matter, ...

Dark Matter searches

Dark matter searches

investigate overdense regions

Upper limits for WIMP annihilation into bb

Start hitting the sensitivity limit of the instruments for many dark-matter searches + systematic limits (dwarf J-factors, diffuse galactic emission)

Upper limits for WIMP annihilation into bb

Axion-like particles search: coupling between photons and ALPs

Start hitting the sensitivity limit of the instruments for many dark-matter searches + systematic limits (dwarf J-factors, diffuse galactic emission)

Gamma-ray bursts

many unknowns in GRBs: nature of central engine, jet formation, particle acceleration, cosmological evolution, progenitors, ...

Constrain the Lorentz factor of the outflow ('compactness'):

$$\Gamma_{\rm min} \lesssim (1+z) \frac{E_{\rm ph,max}}{m_e c^2} \approx 2000(1+z) \left(\frac{E_{\rm ph,max}}{1 {\rm GeV}}\right).$$

Are GRBs sources of ultra-high energy cosmic rays?

Temporal development crucial (e.g. different time scale of leptonic and hadronic acceleration)

Gamma-ray bursts observations

GRB 100621A: one of the brightest X-ray sources ever detected by Swift (z=0.5) The exceptional bright and nearby GRB 130427A (z=0.34): LAT photon at 95 GeV

Fluence ratio X-ray/Gamma-ray >0.4 Constrains leptonic models, as X and Gamma-ray emission is closely connected

Probably best change until now to detect a GRB with a groundbased VHE instrument

Active Galactic Nuclei

- > among most energetic phenomena in the Universe
- powered by supermassive black hole (energy source is accretion on and/or rotation of BH)
- beamed non-thermal emission (geometrical selection)
- > double peaked spectral energy distribution
- variability in every band and on every time scale tested

expect a unique redshift-dependent imprint on y-ray spectra

Measurement of the extragalactic background light

detection of redshift-dependent imprint on γ-ray spectra of bright blazars

Measurement of the extragalactic background light

PKS 1424+240 (see also MAGIC 2014)

Variability of the Crab Nebula

- historically the standard candle in VHE astronomy
- LAT & Agile discovered variations of ~30 >100 MeV on 6 h time scales
- Flares appear at the end of the synchrotron component
- > origin of flares not clear

Variability of the Crab Nebula

- historically the standard candle in VHE astronomy
- LAT & Agile discovered variations of ~30 >100 MeV on 6 h time scales
- Flares appear at the end of the synchrotron component
- > origin of flares not clear

Milagro sources resolved

Complex Morphologies in Pulsar Wind Nebulae

Particle acceleration in Supernova Remnants

It is very hard to image a supernova remnant which does not accelerate

Particle acceleration in Supernova Remnants

Amazingly complex models needed to explain broadband emission:

- hydrodynamic of evolving SNR
 feedback
- non-linear diffusive shock acceleration
- Non-equilibrium ionization for X-ray line emission at forward and reverse shocks
- ejecta composition
- magnetic field amplification
- electron and ion distributions from thermal to relativistic energies
- photon emission
- cosmic-ray propagation

Coupling of thermal and nonthermal emission

Young supernova remnants - modeling

SNR Type Ic

(Wolf Rayet,

fast, low

density wind)

SNR Type IIb

(Red SG,

slow, high

density wind)

2000 years

Telezhinsky et al (2013)

Supernova remnants - RXJ 1713.7-3946

Core-collapse or type Ia SNR?

Uniform ISM model: Ellison, Patnaude, Slane & Raymond ApJ 2010

see also updated models in Lee et al 2012, Ellison et al 2012

Even in IC dominated model:

majority of CR energy (99%) is in ions

majority of ck energy (99%) is in ions

26

Conclusions

- > astrophysics, cosmology and fundamental physics
 - origin of Cosmic Rays, black hole accelerators
 - dark matter particles, Lorentz invariance, …
- > all major observatories (HESS, MAGIC, VERITAS with significant upgrades
 - close to 10,000 h of observations with each observatories
 - deep studies & sophisticated modeling
- Iarge synergies with Fermi LAT, HAWC and other observatories
- > CTA: 10x higher sensitivity...

stop....

stop!!!!

The Cherenkov Telescope Array (CTA)

Prototypes: now; first science 2017; completion 2020

Array of >50 telescopes (3 telescope types) 20 GeV to >300 TeV energy range factor 10 improvement in sensitivity significantly improved angular resolution two observatories: North and South Collaboration of ~1000 scientist See talk tomorrow

Imaging extensive air showers

A shower seen by H.E.S.S.

Cosmic rays → Gamma rays

Cosmic rays → Gamma rays

Cosmic rays → Gamma rays

CTA midsize telescopes

full-scale mechanical prototype (Berlin)

Dual-mirror telescope (prototype to be build in AZ)

How do cosmic rays gain their energy? Where are they accelerated?

Particle acceleration in Supernova Remnants

Don Ellison 2014

Amazingly complex models needed to explain broadband emission:

- hydrodynamic of evolving SNR
- non-linear diffusive shock acceleration
- Non-equilibrium ionization for X-ray line emission at forward and reverse shocks
- ejecta composition
- magnetic field amplification
- electron and ion distributions from thermal to relativistic energies
- photon emission
- cosmic-ray propagation

Particle acceleration in Supernova Remnants

It is very hard to image a supernova remnant which does not accelerate charged particles

non-linear diffusive acceleration

energetics (3-30% of shock energy is converted into particle energies)

Are SNRs efficient accelerators?

Can they accelerate particles up to and beyond

Survey sensitivity in the multi-wavelength context

Simulated image of a 240 h CTA Galactic plane survey for pulsar wind nebula

Sensitivity to transients

factor 1000 higher sensitivity of CTA for short (hours) transients

Angular resolution

The diffuse component

MeV-GeV sky dominated by diffuse background

Fermi LAT 3-years sky map > 10 GeV Diffuse measurements:
cosmic ray content (p,e⁻,..) and spatial distribution
gas content
CR diffusion in magnetic fields, convection, reacceleration

unresolved sources

The Galactic Centre

- SNR 0.9+0.1

Sagittarius B2

Arches Cluster

1E 1743.1-2843

DB00-6

Sagittarius A

DB00-58

Sagittarius B1

Quintuplet Cluster

> Cold Gas Cloud & Radio Arc

Band	Telescope
X-ray	Chandra ACIS
	Hubble Space Telescope NICMOS
Infrared	Spitzer Space Telescope IRAC

The Galactic Centre

H.E.S.S.

point-like gamma-ray source + diffuse component (no extension as expected for most DM models) SNR 0.9+0.1 Sagittarius B2

Sagittarius A

DB00-58

Sernot Maier | Results from IACTs | May 2014

Cloud

o Arc .

The Pion-Decay Signature

see also talk by S.Funk in yesterday's parallel session

 $\pi^0 = E_{\gamma}$

Fermi LAT collaboration 2013

