KASCADE-Grande

...from PeV to EeV: investigating the knee(s)

Paris, APC, May2014

Andreas Haungs (KASCADE-Grande)

Paris, APC, May2014

Andreas Haungs (KASCADE-Grande)

CORSIKA (COsmic Ray SImulations for KAscade)

Today: >900 users in >50 countries and >50 experiments

> I day per 10¹⁵ eV shower

KASCADE-Grande

= <u>KA</u>rlsruhe <u>Shower</u> <u>Core and Array</u> <u>DE</u>tector + Grande and LOPES

Measurements of air showers in the energy range $E_0 = 100 \text{ TeV} - 1 \text{ EeV}$

Paris, APC, May2014

Andreas Haungs (KASCADE-Grande)

KASCADE

KArlsruhe Shower Core and Array DEtector

• Since 1995

Large number of observables: electrons, muons@4 thresholds, hadrons

T.Antoni et al. NIM A513 (2003) 490

Andreas Haungs (KASCADE-Grande)

Model independent multi-parameter analysis

Use of three observables:

- high-energy local muon density → energy estimator
- Total muon number and electron number -> mass estimator

- KNEE CAUSED BY DECREASING FLUX OF LIGHT ELEMENTS
- Do we need hadronic interaction models?
 - ➔ yes, for normalization of absolute energy and mass scale!!

T.Antoni et al. Astroparticle Physics 16 (2002) 373

KASCADE : energy spectra of single mass groups

Searched: E and A of the Cosmic Ray Particles <u>Given:</u> N_e and N_μ for each single event → solve the inverse problem

 $\frac{dJ}{d\lg N_e \, d\lg N_{\mu}^{tr}} = \sum_A \int_{-\infty}^{+\infty} \frac{dJ_A}{d\lg E} \left[p_A(\lg N_e, \lg N_{\mu}^{tr} | \lg E) \, d\lg E \right]$

- kernel function obtained by Monte Carlo simulations (CORSIKA)
- contains: shower fluctuations, efficiencies, reconstruction resolution

KASCADE collaboration, Astroparticle Physics 24 (2005) 1-25

5.5

Ig N.tr

KASCADE results

- same unfolding but based on different hadronic interaction models embedded in CORSIKA

- all-particle spectrum similar
- general structure similar: knee by light component
- relative abundances very different for different high-energy hadronic interaction models

KASCADE collaboration,

Astrop.Phys. 24 (2005) 1 , Astrop.Phys. 31 (2009) 86

observation of a "light" knee at 2-4-10¹⁵ eV

The proton spectrum

- a bit outdated....needs update (new experiments, new hadronic models)

Air Shower Detection at High Alkibude

Gamma ray search at KASCADE

KASCADE collaboration, Zhaoyang Feng, Donghwa Kang, in preparation

- Data set from 1998.05.11 to 2010.05.14 ; 3 • 10⁸ events

- -selection of muon poor events (88170 events)
- -Gamma energy: >168 TeV
- -Background estimation (equi-distant zenith angles) Anemonori et al.
- -Significance estimation (Li-Ma and Poisson signifcances)
- -Diffuse flux limit calculated for different energies (Helene 1983)
- -Upper point source limits calculated

Muonless events

muon rare events

KASCADE-Grande: multi-parameter measurements

Andreas Haungs (KASCADE-Grande)

KASCADE-Grande: the measurement

determination of primary energy separation in "electron-rich" and "electron-poor" event

All-particle energy spectrum :

$log_{10}(E) = [a_p + (a_{Fe} - a_p) \cdot k] \cdot log_{10}(N_{ch}) + b_p + (b_{Fe} - b_p) \cdot k$

 $k = (\log_{10}(N_{ch}/N_{\mu}) - \log_{10}(N_{ch}/N_{\mu})_{p}) / (\log_{10}(N_{ch}/N_{\mu})_{Fe} - \log_{10}(N_{ch}/N_{\mu})_{p})$

-different zenith angle bins -no composition dependence

Astroparticle Physics 36 (2012) 183

KASCADE-Grande all-particle energy spectrum

Astroparticle Physics 36 (2012) 183

- spectrum not a single power law
- hardening of the spectrum above 10¹⁶eV
- steepening close to **10¹⁷eV** (2.1σ)

Composition via shower size ratio :

 $log_{10}(E) = [a_{p} + (a_{Fe} - a_{p}) \cdot k] \cdot log_{10}(N_{ch}) + b_{p} + (b_{Fe} - b_{p}) \cdot k$ k = (log_{10}(N_{ch}/N_{\mu}) - log10(N_{ch}/N_{\mu})_{p}) / (log10(N_{ch}/N_{\mu})_{Fe} - log10(N_{ch}/N_{\mu})_{p})

KASCADE-Grande: Spectra of individual mass groups $k = (log_{10}(N_{ch}/N_{u}) - log10(N_{ch}/N_{u})_{p}) / (log10(N_{ch}/N_{u})_{Fe} - log10(N_{ch}/N_{u})_{p})$

observation of a "heavy" knee at 8-9-10¹⁶ eV

- spectra of individual mass groups:

→ steepening close to 10¹⁷eV (2.1σ) in all-particle spectrum

steepening due to
 heavy primaries (3.5σ)

→ spectrum of more enhanced heavy sample has harder spectrum before break.

 → light+medium primaries show steeper spectrum, but fit by power law okay
 → possibility for hardening above 10¹⁷eV

KASCADE-Grande: spectrum of light primaries

- re-investigation of the spectrum of light primaries:
- → increased area (higher threshold)
- ➔ 1 year more data
- → improved selection cut

Phys.Rev.D (R) 87 (2013) 081101

KASCADE-Grande: spectrum of light primaries

Andreas Haungs (KASCADE-Grande)

KASCADE-Grande energy spectra of mass groups

• steepening due to heavy primaries (3.5σ)

hardening at 10^{17.08} eV
(5.8σ) in light spectrum

• slope change from $\gamma = -3.25$ to $\gamma = -2.79!$

Phys.Rev.Lett. 107 (2011) 171104 Phys.Rev.D (R) 87 (2013) 081101

Unfolding results: KASCADE and KASCADE-Grande

spectra of individual mass groups:
proton medium (He+C+Si) iron
→ all spectra overlap and agree well!
→ all three show a knee-like feature!!

Astroparticle Physics 47 (2013) 54

Validity of Hadronic Interaction Models

KASCADE-Grande: model dependence

Structures of all-particle, heavy and light spectra similar

→ knee by light component and heavy component; ankle by light component

- relative abundances different for different high-energy hadronic interaction models

Advances in Space Research 53 (2014) 1456

KASCADE-Grande: Muon Attenuation Length

attenuation length measured is different from the predictions of Monte Carlo observed evolution of the muon content of EAS in the atmosphere is not described by the hadronic interaction models

influences absolute energy and mass scale, but not spectral features

KASCADE-Grande, ICRC 2013 #0772, paper in preparation

total muon number

Present Main Experiments 10¹⁶-10¹⁸eV

Tunka-133

Andreas Haungs (KASCADE-Grande)

ІсеТор

Phys Rev D 88 (2013) 042004

- Energy range: PeV 1EeV
- Area: 1 km²
- 2835m altitude (680 g/cm²)
- 81 ice cherenkov stations
- LDF + particle density at 125m
- in-ice high-energy muons

All-particle spectra

difference due to hadronic interaction model or reconstruction?

All-particle spectra

- spectra of individual masses (mass groups) are important!!

Light and Heavy Knees, Ankles, and Transition

- → KASCADE: knee of light primaries at ~3.10¹⁵eV
- Hardening at 10¹⁶eV due to knee of medium component \rightarrow
- → KASCADE-Grande: knee of heavy primaries at ~9.10¹⁶ eV
- heavy knee less distinct compared to light knee \rightarrow
- mixed composition for 10^{15} to ~ 8.10¹⁷ eV **→**
- light ankle at 1-2-10¹⁷ eV **>**

Knee position & L

Light and Heavy Knees, Ankles, and Transition

Questions:

- which astrophysical scenario (model) describes the data?
- exact energy and mass scale?
- spectral shape of individual masses?

V.Berezinsky, astro-ph/0403477

D.Allard, astro-ph/1111.3290

KASCADE-Grande: Next

• KASCADE + KASCADE-Grande finally closed end 2012 now dismantled

• combined analysis for coherent spectrum and composition 10¹⁴-10¹⁸ eV

• detailed data analysis (20y high-quality data) testing hadronic interaction models anisotropy studies radio (LOPES and CROME)

• KCDC KASCADE Cosmic ray Data Centre

https://kcdc.ikp.kit.edu/

• KCDC = publishing research data from the KASCADE experiment

• Motivation and Idea of Open Data: general public has to be able to access and use the data the data has to be preserved for future generations

• Web portal:

providing a modern software solution for publishing KASCADE data for a general audience In a second step: release the software as Open Source for free use by other experiments

• Data access:

1.6-10⁸ EAS events of first data release is now available

KASCADE-Grande: Mission Accomplished !!

open access to research data https://kcdc.ikp.kit.edu

Paris, APC, May2014

Andreas Haungs (KASCADE-Grande)

Summary

LHAASO

ARGO / GRAPES / ASy /GAMMA

