Status and Perspectives of the LAGO Project 5th Workshop on Air Shower Detection at High Altitude Paris, France

Édgar F. Carrera ⊠ecarrera@usfq.edu.ec

(for the LAGO Collaboration)

Universidad San Francisco de Quito

May 27, 2014

イロト イ団ト イヨト イヨト

Let's start by what it means ...

Image: Image:

Let's start by what it means ...

Latin American Giant Observatory

Let's start by what it means ...

Latin American Giant Observatory

A little obnonioux, but let's see ...

This is the Large Hadron Collider

Edgar Carrera (USFQ)

May 27, 2014 3 / 17

< A D > < D >

This is the Pierre Auger Observatory

Edgar Carrera (USFQ)

The LAGO Project

and the Latin American Giant Observatory

Edgar Carrera (USFQ)

The LAGO Project

May 27, 2014

The LAGO Collaboration

LAGO: Latin American Giant Observatory

- A very long baseline "array" of Water Cherenkov detectors (WCD)
- Formerly "The Large Aperture Gamma Ray Observatory"
- 9 Latin American countries

The LAGO Collaboration

LAGO: Latin American Giant Observatory

- A very long baseline "array" of Water Cherenkov detectors (WCD)
- Formerly "The Large Aperture Gamma Ray Observatory"
- 9 Latin American countries

The LAGO scientific goals

- Search for HE component of GRBs at ground level
- Study transient and long term Space Weather phenomena trough Solar modulation (SM) of Cosmic Rays (CR)

The Latin American Astroparticle Network

- Non-centralized, collaborative network of institutions
- Horizontal management
- Developments, expertise and data are shared across the network
- Open working groups

WCD: Water Cherenkov Detector

- Autonomous, reliable, simple and cheap detector
- Single particle technique or array mode
- Sensitivity to secondary charged particles and γ (mainly trough $\gamma \rightarrow e^+e^-$)
- Mostly commercial tanks with $1.5 \text{ m}^2 10 \text{ m}^2$ of detection area filled with purified water
- Inner coating of Tyvek (UV diffusive and reflective fabric)
- 8/9" PMT + Digitizer board (own design) + GPS + Temperature and Pressure sensor
- FPGA + Raspberry Pi: detector control, telemetry, data acquisition and on board data pre-analysis

 Digitized signals by a 10 bits FADC at 40 MHz (25 ns)

-∢ ∃ ▶

- Temporal synchronization: GPS in PPS mode
- Station consumption: $\lesssim 8 \, W$

Image: Image:

Very low cost detector

• Two sites with detectors at high altitude (> 4500 m):

Edgar Carrera (USFQ)

• Two sites with detectors at

high altitude (> 4500 m):

- Sierra Negra (México): 4550 m, 4 detectors 40 m² (formerly three 2 m² and two 1 m² detectors)
- Chacaltaya (Bolivia): 5250 m, 3 detectors 4 m²

Edgar Carrera (USFQ)

May 27, 2014 7 / 1

- Two sites with detectors at high altitude (> 4500 m):
 - Sierra Negra (México): 4550 m, 4 detectors 40 m^2 (formerly three 2 m^2 and two 1 m^2 detectors)
 - Chacaltaya (Bolivia): 5250 m, 3 detectors 4 m²
- Prospective high altitude

sites:

 Chimborazo (Ecuador), 4800 m

Edgar Carrera (USFQ)

• Two sites with detectors at

high altitude (> 4500 m):

- Sierra Negra (México): 4550 m, 4 detectors 40 m^2 (formerly three 2 m^2 and two 1 m^2 detectors)
- Chacaltaya (Bolivia): 5250 m, 3 detectors 4 m²

Prospective high altitude

sites:

- Chimborazo (Ecuador), 4800 m
- Ousco (Perú), 4450 m

- Two sites with detectors at high altitude (> 4500 m):
 - Sierra Negra (México):
 - 4550 m, 4 detectors 40 m² (formerly three 2 m² and two 1 m² detectors)
 - Chacaltaya (Bolivia): 5250 m, 3 detectors 4 m²
- Prospective high altitude

sites:

Image: A matrix

- Chimborazo (Ecuador), 4800 m
- Cusco (Perú), 4450 m
- Pico Espejo (Venezuela), 4780 m

Edgar Carrera (USFQ)

The LAGO Project

- Two sites with detectors at high altitude (> 4500 m):
 - Sierra Negra (México): 4550 m, 4 detectors 40 m² (formerly three 2 m² and two 1 m² detectors)
 - Chacaltaya (Bolivia): 5250 m, 3 detectors 4 m²
- Prospective high altitude

sites:

- Chimborazo (Ecuador), 4800 m
- Cusco (Perú), 4450 m
- Pico Espejo (Venezuela), 4780 m
- Lower altitude sites:
 - Bariloche (Argentina), Bucaramanga (Colombia), Lima (Perú) [in operation]
 - Many others in development (including Marambio in Antactica)

Edgar Carrera (USFQ)

The LAGO Project

- Two sites with detectors at
 - high altitude (> 4500 m): • Sierra Negra (México):
 - Sterra Negra (Mexico): 4550 m, 4 detectors 40 m² (formerly three 2 m² and two 1 m² detectors)
 - Chacaltaya (Bolivia): 5250 m, 3 detectors 4 m²
- Prospective high altitude

sites:

- Chimborazo (Ecuador), 4800 m
- Cusco (Perú), 4450 m

 Pico Espejo (Venezuela), 4780 m

- Lower altitude sites:
 - Bariloche (Argentina), Bucaramanga (Colombia), Lima (Perú) [in operation]
 - Many others in development (including Marambio in Antactica)

Edgar Carrera (USFQ)

The LAGO Project

Our scientific objectives

Astroparticles, witnesses of the extreme universe

- Flux of low energy cosmic rays (CR)
- High energy component of GRBs

Our scientific objectives

Astroparticles, witnesses of the extreme universe

- Flux of low energy cosmic rays (CR)
- High energy component of GRBs

Astroparticles, tracers of Space Weather

- Transport of CR in the heliosphere
- Solar Modulation of Galactic Cosmic Rays (GCR)
- Magnetic reconnection in the Magnetosphere
- Sun-Earth-Human Life connection

Our scientific objectives

Astroparticles, witnesses of the extreme universe

- Flux of low energy cosmic rays (CR)
- High energy component of GRBs

Astroparticles, tracers of Space Weather

- Transport of CR in the heliosphere
- Solar Modulation of Galactic Cosmic Rays (GCR)
- Magnetic reconnection in the Magnetosphere
- Sun-Earth-Human Life connection

Astroparticles, sources of background radiation

• Atmospheric radiation at ground and flight level

LAGO- γ Program on GRBs arXiv:0906.0814; arXiv:0906.0816; arXiv:0906.0820

LAGO fluence limits

Candidate of GRB at Sierra Negra

Edgar Carrera (USFQ)

Space Weather

Sun-Earth connection

- Dynamic conditions in the Earth outer space environment:
 - Disruption of electrical power grids
 - Contribute to the corrosion of long pipelines
 - HF radio communications and GPS interferences
 - Operational anomalies and damage or degradation of critical electronics on spacecraft, satellites and even on board of commercial airplanes

< ∃ >

Edgar Carrera (USFQ)

Lago-Solar

WCD space weather oriented modes

H. Asorey[Pierre Auger Collab.], 31th ICRC Vol 7(2009)312; H. Asorey[Pierre Auger Collab.], 32th ICRC Vol 11(2011)462; S. Dasso & H. Asorey, [Pierre Auger Collab], Adv. Sp. Res. 49:11(2012)1563

WCD space weather oriented modes

H. Asorey[Pierre Auger Collab.], 31th ICRC Vol 7(2009)312; H. Asorey[Pierre Auger Collab.], 32th ICRC Vol 11(2011)462; S. Dasso & H. Asorey, [Pierre Auger Collab], Adv. Sp. Res. 49:11(2012)1563

Edgar Carrera (USFQ)

The LAGO Scientific Program

Lago-Solar

The LAGO Space Weather Program

via Solar modulation of low energy cosmic rays

Connections Solar Activity **CR** Flux Modulated flux Geomagnetic field Modulated flux Primaries Atmospheric conditions Primaries Secondary particles Detector response Signals Secondary particles

Synergy

Flux variation of signals at detector level \Leftrightarrow Solar Activity

Edgar Carrera (USFQ)

.

Simulations (underway)

Detailed simulation chain

- Determine rigidity cut-off at each site $R(\varphi, \lambda, \theta, \phi)$ (underway)
- Primary flux at the top of the atmosphere (CORSIKA sims for each site (φ, λ, h))
 - Measured spectra for all nuclei $1 \le Z_p \le 26, \ 1 \le A_p \le 56$
 - $(R(\theta,\phi) \times Z_p) \leq (E_p/\text{GeV}) \leq 10^6$, $0^\circ \leq \theta \leq 90^\circ$
 - Integrated primary flux: $\sim 5.8 \times 10^6 \, hour^{-1} \, m^{-2} \; (\gtrsim 5 \, hours$ at each site)
- Secondary flux at detector level
- Detector response (underway): simple detector simulation & detailed GEANT4 model

ト くまト くまト

Simulated flux at detector level

Bariloche (BRC, 850 m a.s.l.)

- 800 part. seg⁻¹ m⁻²
- EM:MU:NE:HD = 0.767 : 0.209 : 0.020 : 0.004

Chacaltaya (CHA, 5240 m a.s.l.)

- 7100 part. seg⁻¹ m⁻²
- EM:MU:NE:HD = 0.900 : 0.052 : 0.038 : 0.010

March/2012: Solar eruptive event

07/March: X5.4 major solar flare + Halo CME/iCME towards earth + Geomagnetic storm

Edgar Carrera (USFQ)

The LAGO Project

08/March/2012: Forbush event \leftarrow single LAGO detector

LAGO-BRC: 1.8 m² WCD detector

Summary

Lago Summary

LAGO-Gamma:

- Detection of the high energy component of GRBs.
- None seen so far; expanding sites and improving detectors.

LAGO-Solar:

- Cosmic ray solar modulation
- Possible connections with physics of the atmosphere

LAGO-Academic :

- Astrophysics and particle physics in undergraduate courses
- Atmospheric radiation background
- Data analysis and statistic
- Muon decay
- Detector physics
- Interaction of radiation with matter
- Construction and characterization of detector
- LAGO-Virtual: Collaborative repository of high capacity for data analysis, simulations and storage
- Regional integration in Latin America:
- More than 80 scientists and students from nine latin american countries

Image: Image: