

Status of the HiSCORE Project

M. Tluczykont, D. Horns Tunka-HiSCORE, TAIGA

- Physics motivations & The HiSCORE concept
- Status of the 9-station Tunka-HiSCORE array
- Future plans: TAIGA and further prototyping

HiSCORE Hundred*i Square-km Cosmic ORigin Explorer

Concept: non-imaging air Cherenkov technique

Large area: up to few 100 km²

Large Field of view: ~ 0.6 sr

Sky-coverage: > π sr @ 200 h / year

2014: Astroparticle Physics, in press, 2014arXiv1403.5688T 2013NIMPA.712..137H, arXiv:1302.3957 2011AdSpR..48.1935T, astro-ph/1108.5880 http://wwwiexp.desy.de/groups/astroparticle/score/ http://tunka-hrjrg.desy.de/ http://de.wikipedia.org/wiki/HiSCORE

Physics motivations

Cosmic rays

Spectrum & composition in transition range Galactic / extragalactic origin

1e-10

1e+11

100000 'e+06 1e+07 1e+08 1e+09 **Gammas from Galactic Cosmic rays:** $E_{\gamma} \sim E_{CR}/10$

-e+07

'e+D6

1000.00

1000

10000

--

E³* Flux (GeV² m⁻² s⁻¹ sr

 $p (p, \gamma)$

The Pevatron energy range

Accessing the pevatron sky \rightarrow very large area

The HiSCORE concept

Picture: Serge Brunie

The HiSCORE concept

Efficient instrumentation of very large areas:

- Imaging air Cherenkov telescopes: O(1000) channels / km²
- Non-imaging air Cherenkov technique: O(100) channels / km²

UН Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

martin.tluczykont@physik.uni-hamburg.de

Physics potential of HiSCORE

(gamma-ray astronomy)

Opening up the Pevatron range

26.05.2014

Opening up the Pevatron range

Tunka site exposure map

Field of view: π steradian

Array optimization

Simulation studies:

- \rightarrow Large PMTs (12")
- \rightarrow Graded array layout

martin.tluczykont@physik.uni-hamburg.de

Physics Potential

MGRO J1908+06

Tycho Supernova remnant

e⁺e⁻ pair production

e⁺e⁻ pair production

MGRO J2031

The Tunka-HiSCORE project

First realization of the HiSCORE concept

Helmholtz-Russia Joint Research Group HRJRG-303

Russian "Mega-grant"

M. Brückner³, N. Budnev⁵, O. Chvalaev⁵, A. Dyachok⁵, S. Epimakhov¹, O. Gress⁵, D. Hampf¹, D. Horns¹,
A. Ivanova⁵, S. Kiruhin⁵, E. Konstantinov⁵, E. Korosteleva⁴, M. Kunnas¹, L. Kuzmichev⁴, B. Lubsandorzhiev⁶, N.B. Lubsandorzhiev⁴, R. Mirgazov⁵,
R. Monkhoev⁵, R. Nachtigall¹, A. Pakhorukov⁵, V. Poleschuk⁵, A. Porelli², V. Prosin⁴, G.I. Rubtsov⁶,
M. Rüger², 3 P.S. Satunin⁶, Yu. Semeney⁵, D. Spitschan¹, L. Sveshnikova⁴, M. Tluczykont¹, R. Wischnewski², A. Zagorodnikov⁵

February 17, 2014

 Institute for Experimental physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
 DESY, Platanenallee 6, 15738 Zeuthen, Germany
 Institute for Computer Science, Humboldt-University Berlin, Rudower Chaussee 25, 12489 Berlin, Germany
 Skobeltsyn institute for Nuclear Physics, Lomonosov Moscow State University, 1 Leninskie gory, 119991 Moscow, Russia
 Institute for Nuclear Research of the Russian Academy of Sciences 60th October Anniversary st., 7a, 117312, Moscow, Russia

Tunka-HiSCORE

Status

- 1st light prototype 2012
- 3-station array 2012/13
- 9-station array since October 2013

Status

Prototype-array:

- 9 stations, 300m X 300m
- 150m inter-station distance
- 4 channels (PMT+Cone)
- 2 parallel DAQ systems
- Gamma-ray energy threshold: <100TeV

Future improvements:

- Graded array and clipping
- + 25 stations
- + IACTs

Status

Prototype-array:

- 9 stations, 300m X 300m
- 150m inter-station distance
- 4 channels (PMT+Cone)
- 2 parallel DAQ systems
- Gamma-ray energy threshold: <100TeV

Future improvements:

- Graded array and clipping
- + 25 stations

• + IACTs

Detector components

Detector components

Ianod 4300UP reflective sheets

8"/PMTs (Hamamatsu & ElectronTubes)

9-station array DAQ

- Analog sum trigger: $\Sigma_{i=1}^{A} a_{i} > A_{thr}$
- Plan: clipped sum trigger (reduction of noise)
- 2 independent DRS4-based DAQ systems ullet
- DRS4 custom board + t-sync system →
- DRS4 evaluation board + WhiteRabbit sub-ns time- synchronization

26.05.2014

GHZ sampling and sub-ns precision ! martin.tluczykont@physik.uni-hamburg.de

26.05.2014

Data quality

- Operation since 10/2013
- Daily quality checks (rate stability, amplitude spectra, tie difference distributions,...)

counts

Noise and Cosmic triggers

Timing verification

h2 1400 Entries Mean RMS 1200 χ^2 / ndf 50 Prob 0 1000 138 Constant LED 398 Mean Sigma 18.4 800 CRs 600 400 200 0^{_L} 800 100 200 300 400 500 600 700 900 Pulsed LED Light **Spherical wave fit:** source \rightarrow sub-ns timing resolution

amplitudes_with_sum/amplitudes_s5-20140307-183623-1394217383-HLEDrun

Combining HiSCORE with telescopes

Non-imaging and imaging hybrid detection

Central reconstruction parameter: Shower core position

26.05.2014

Central reconstruction parameter: Shower core position

Test width scaling with IACT+HiSCORE "toy-MC-test"

- Full simulation sim_telarray
- 2D-lookup-table for MC-width w_{MC}(core, size)
- MC-core randomized with HiSCORE resolution
- Use randomized core position for width scaling

Preliminary results hybrid width scaling:

- Improves gamma-hadron separation
- Increases total area as compared to stereoscopic array

Q-factor ~2.2

(Simulated granularity: 0.5°)

Hybrid events: more reconstruction

- Expect sensitivity boost:
 - Scaled width cut (Q>2)
 - Further g/h separation: Angular cut, length, ...
 (+ more sophisticated methods)
 - Improved angular resolution from hybrid events: e.g. treat telescope as part of array (not yet simulated)
 - Consider time-development of image \rightarrow independent direction reconstruction

Core distancenartin.tluczykont@physik.uni-hamburg.de

High Altitude Workshop 2014

Hybrid events: Sensitivity

Summary & outlook

Tunka-HiSCORE 9-Station array:

- Operational since 10/2013
- Data verification and analysis ongoing

TAIGA, 2014+

- Tunka Area International Gamma-ray and cosmic ray Astrophysics
- 1 km² engineering array
- HiSCORE + imaging telescopes
- Expect 1st physics results

HISCORE @ PAO

• Prototypes planned for deployment 2015

Outlook 2: HISCORE at Pier CUNG I DER LEHRE I DER BILDUNG **Auger Observatory**

Outlook 2: HISCORE at Pier Dung | Der LEHRE | DER BILDUNG

Auger Observatory

Dual purpose:

1. Cross-calibration with PAO detectors

2. Fluorescence measurements using signal timing

2D-lookup-table

martin.tluczykont@physik.uni-hamburg.de

High Altitude Workshop 2014

Assuming HiSCORE core resolution ~20m

Hadron rejection (width) and care universität Hamburg granularity

Figure 2. The dependence of cosmic-ray rejection factor κ_{er} after application of the Width. Length and Azwidth cuts on the camera granularity $\Delta \vartheta$. The camera field of view $\Theta_0 \simeq 4^\circ$, the trigger multiplicity m = 2. The cuts are chosen from the condition that the γ -ray acceptance efficiency $\kappa_{\gamma} = 0.5$.

Aharonian et al. 1995

First HiSCORE prototypes

3 Station array 10/2012 – 04/2013

10/2012 - 04/2013

3 Station array 10/2012 – 04/2013

Absorption of gamma-rays by e+e- pair production with low energy photons (Moskalenko et al. 2006):

- Interstellar radiation field
- Cosmic Microwave Background

Lateral Cherenkov Photon Distribution

Lateral Cherenkov Photon Distribution

Universität Hamburg

Lateral Cherenkov Photon Distribution

UH

Universität Hamburg

DER FORSCHUNG I DER LEHRE I DER BILDUNG

The HiSCORE detector

Simulation & reconstruction

CORSIKA + IACT

Simulation & Reconstruction

Reconstruction

Major topic of PhD thesis, <u>daniel.hampf@physik.uni-hamburg.de</u>

HiSCORE event display 500 TeV gamma-ray Simulation

Reconstruction Direction: photon arrival time model Energy: Value of LDF @ 220 m Particle type: Shower depth and Signal rise-time

Extract PMT signal parameters

- Preliminary shower core position (cog)
- Preliminary direction (time plane fit)
- Improved core position: light distribution function (LDF) fitting
- Improved direction: arrival time model

>3 stations: model fit adapted from Stamatescu et al. 2008,

Parametrization of time-delay *dt* at detector position

$$dt(k,z) = \frac{1}{c} \left(\sqrt{k} - \frac{z}{\cos(\theta)} + \frac{8.0}{z} \sqrt{k} \eta_0 \left(1 - \exp\left(\frac{-z}{8.0}\right) \right) \right)$$
$$k(r,z) = r^2 + z^2 \frac{1}{\cos(\theta)^2} + 2rz \tan(\theta) \cos(\delta)$$

$$\delta = \phi + \operatorname{atan2}\left((x_{Det} - x_{core}), (y_{Det} - y_{core})\right)$$

>3 stations: model fit adapted from Stamatescu et al. 2008,

Parametrization of time-delay *dt* at detector position

Direction reconstruction

Angular resolution of alternative layouts

martin.tluczykont@physik.uni-hamburg.de.de

Energy reconstruction

Particle energy: Q220 = Value of LDF at 220m

martin.tluczykont@physik.uni-hamburg.de.de

Energy reconstruction

Particle energy: Q220 = Value of LDF at 220m

Shower depth reconstruction

- Time model method: one free parameter in arrival time model
- LDF method: Depth from LDF slope, Q50/Q220
- Width method: Depth from signal width

Shower depth

Depth of shower maximum

Shower depth bias

Systematic bias

- → LDF & widths : sensitive to whole shower Large overestimation for heavy particles (long tails)
- → <u>Timing</u>: sensitive to specific point (edge time) Small overestimation for heavy particles

martin.tluczykont@physik.uni-hamburg.de.de

Particle separation

Particle separation (1)

martin.tluczykont@physik.uni-hamburg.de.de

Particle separation (2)

martin.tluczykont@physik.uni-hamburg.de.de

Particle separation (3)

martin.tluczykont@physik.uni-hamburg.de.de

HRJRG-303

Helmholtz Russia Joint Research Group

"Measurements of Gamma Rays and Charged Cosmic Rays in the Tunka-Valley in Siberia by Innovative New Technologies"

04/2012 - 04/2015

G. Rubtsov, I. Tkatchev (INR)

A. Konstantinov, L. Kuzmichev (MSU)

R. Vasilyev, N. Budnev (ISU)

R. Wischnewski, C. Spiering (*DESY*)

F. Schröder, A. Haungs (KIT)

M. Tluczykont, D. Horns (*U. Hamburg*)

HiSCORE and Radio detectors @ Tunka

Innovation Proof-of-principle Synergies