Results and future plans of Tunka

L.Kuzmichev (SINP MSU) On behalf of Tunka and TAIGA Collaboration

Paris, 28 of May 2014

Outline

- 1. Tunka array : history, status and main results
- 2. Tunka Radio Extension (Tunka-REX)
- 3. Deployment of scintillation station
- 4. TAIGA array Towards gamma-astronomy

Tunka-133 array: 175 optical detectors on 3 km² area

Status of 2014

Deploymnet of the new scintillation Stations (from Kascade-Grande)

25 antennas for registration radio signals from EAS Tunka-REX array

Some important steps towards Tunka-133

- 1. 2002: G.Navarra suggested to ask for PMTs from MACRO for the new array.
- 2. 30.12 2003: 200 PMT in Moscow.
- 3 2004 : Starting R&D financial support from DFG- RFBR.
- 4. 2005: Optical cable (~ 10km) from the closed project EAS1000.
- 2006 : Starting of financial support of the project from Ministry of Education and Science. Project budget ~ 100 -150 KEU per year

Gianni("Ramon") Navarra 12/9/1945 - 24/8/2009

Karlsruhe, March 2009

Moscow, October 2005

Tunka Inauguration (September 2009)

EP.

Physics goals

 Cosmic Rays study in the energy range of 10¹⁶ - 10¹⁸ eV: Transition form Galactic CR to extragalactic.
 Main results: all particle energy spectrum and mass composition

2. Search for gamma-rays with energies of 5.10¹⁶ - 5.10¹⁷ eV

Primary nucleus E₀, A?

1.

2.

Energy reconstruction

E = A (Q200) g Density of Cherenkov light at core distance of 200 m

For $10^{16} - 10^{18}$ eV (CORSIKA):

 $g = 0.94 \pm 0.01$

WDF – width distant function

ADF – amplitude distant function is used for core location

All particle spectrum

Comparison with other experiments

- 1. Agreement with KASCADE-Grande
- 2. Agreement with old Fly's Eye, HiRes and TA spectra.

Xmax dependence from energy

EXPERIMENT: MEAN <InA> vs. E₀

Xmax distribution analysis:

Experimental Xmax distribution Fitted with sum of distribution For P, He, CNO, Fe

Tunka-REX

< □ > < 🗗 >

Connection of 2 antennas to 2 free channels of FADC

Tunka-Rex detector

- 25 antennas on 1 km² area
- Existing DAQ of Tunka-133
- Trigger and information from air-Cherenkov detector
- Radio quiet rural location
- Strong geomagnetic field (\approx 60 μ T)
- Joint operation of radio and air-Cherenkov detectors
- Goal: precision of radio reconstruction for shower parameters (energy and shower maximum)

Tunka-Rex example event

For analysis we use the radio part of the Auger Offline software¹

Correlation with amplitude (n = 2)

Grande detectors reached Tunka (July 2013)

Muon detector

Absolute energy calibration experiment. Repeating the "QUEST" at 10¹⁶ -10¹⁷ eV

Search for gamma-rays with energy 5.10¹⁶ - 5.10¹⁷ eV

Fluorescent detector

The movable support produced in JINR

Towards High Energy Gamma-Rays Astronomy array at Tunka Valley

TAIGA – Tunka Advanced Instrument for cosmic rays and Gamma and Astronomy

Array design concept

•Non imaging wide-angle optical stations (HiSCORE type)

•Net of imaging detectors with mirrors 10 m² square.

Net of muon detectors
10² → 2 10³ m² area.

TAIGA Collaboratipn

Germany

Russia

Hamburg University(Hamburg) DESY (Zeuthen) MPI (Munich) Humbolt University

ITALY Torino University

MSU(SINP)(Moscow) ISU (API) (Irkutsk) INR RAS(Moscow JINR (Dubna) MEPHI(Moscow) IZMIRAN Kurchatov Institute IPSM(Ulan-Ude)

Methodical approaches

- Shower front and LDF sampling technique . Angular resolution – 0.1 deg, X_{max} measurement for hadron rejection.
- 2. Using of mirrors net with cheap matrix of PMTs for imaging technique.
- 3. Using of large area muon detectors for hadron rejection.

Concept of HiSCORE approach

-Better than for Tunka angular resolution,- up to 0.1 degree -much lower energy threshold – up to 30 TeV . -Field of View (FOV) – 0.6 sr (±30 deq)

- Low cost of each station – possibility to cover large area

HiSCORE – Hundred* i Square-km Cosmic Origin Explorer

Ways of threshold decreasing

$E_{th} \sim (S_{det.} \eta)^{-1/2} (T_{signal})^{1/2}$

- 1. Winston cones PMT area increase in 4 times ($K = 1/sin^2$ (tet) tet=30° - K = 4)
- 2. Analog summation of signals in one station
- 3. Decreasing of T_{signal} to 7-10 ns
- 4. QE max = 35-40%
- 5. Using of wavelength shifter

Winston cone

DAQ for one station

Pulse delay = timer + opt. line length + add. delay

opt. lengths, ns

327.2
 841.7
 841.7
 876.2
 245.4
 804.3
 0.0
 1311.7
 765.2

Recorded anode pulse – 1st – 4th channels of DRS 0.5 ns step

Clock signal – the 9th channel of DRS

Amplitude spectrum of PMTs in station

Residual time (T exp – Tfit) distributions

RMS ~ 0.6 ns

Energy spectrum (from 1 night)

Energy spectrum from Tunka-25 (300 hours)

Area of Tunka-25 – 0.1 km²

With 1 km² Tunka- HiSCORE this spectrum can be checked

2014

32 stations – 0.3 sq.km array

Threshold for gamma –ray flux

D = 4.32m F = 4.75 m

34 mirrors with 60 cm diameters

Camera : 400 PMTs (XP 1911) with 15 mm useful diameter of photocathode Winston cone: 30 mm input size, 15 output size 1 single pixel = 0.36 deg full angular size 8.3 deg

DAQ - MAROC3

First telescope in autumn 2015

2000 m² muon detectors (0.2% of array area)

Scintillation detectors developed in Mephi

Conclusion

- 1. Tunka-133 will continue data taking with scintillation detectors 5 years more.
- 2. Additional ~20 antennas will be deployed
- 3. TAIGA array will be deployed (in full scale) in 3-5 year.

Thank you