The knee of the proton spectrum Measured by using a hybrid experiment at 4300 m a.s.l. LHAASO for CRs

> Zhen Cao, IHEP, Beijing for the ARGO-YBJ Collaboration & the LHAASO Collaboration

High Altitude Workshop, May, 2014, APC, Paris

# Outline

 The Motivation of the Hybrid Experiment with WFCTA Prototype and the ARGO-YBJ RPC Carpet

- Efficiency and the Observation
- The Performance of the Hybrid Experiment
  - Data vs. Simulation
  - Selection of H&He from All CR Showers
  - Aperture for H&He Detection and the Contamination
  - Energy reconstruction and its Resolution
- The H&He Spectrum
- The knee of proton spectrum
- LHAASO on CRs and status

# Motivation

- Highly unknown "knee"-mechanism
- Too many assumptions, too many "measurements"!
   Major tension is between KASCADE and CASA/MIA



### **KASCADE vs. CASA-MIA**



### Motivation

- Aim: To bridge between balloon borne measurements and ground based experiments for crosscalibration between the experiments.
- CREAM: energy spectrum of single element up to 100TeV
- > ARGO-YBJ (H&He): 7TeV-200TeV
- AMSo2 further confirmed the energy scale
- This work is to extend the ARGO-YBJ results to higher energies





Wide Field of View Cherenkov Telescope (WFCTA)
> 5m<sup>2</sup> spherical mirror;
> 16×16 PMT array
> Pixel size 1°;
> FOV: 14° × 16°;
> Elevation angle: 60°.

#### **One of Cherenkov event**







# Hybrid Measurement

### ARGO-YBJ: lateral distribution

- In the core region ightarrow mass sensitive

### Cherenkov Telescope: longitudinal information

- Hillas parameter ightarrow mass sensitive

Good energy resolution





### CR measurement of the hybrid experiment

#### Extensive air showers

- Corsika6735: QGSJETII-03+GHEISHA
- All primary particles in 5 groups: H, He, CNO, MgAlSi, Fe 1:1:1:1:1
- Energy range: 10 TeV 10PeV
- Geometry: θ~20° 42 °, φ~69 ° -111 °, Core: ±150 m

#### Detector simulation

- Cherenkov telescope: Ray tracing for every photons in shower images
- RPC-carpet: GEANT-4 based program, G4argo



### Hybrid Observation and Data Set

#### Period:

- From 2010.12 ~ 2012.02: Coincidence events;
- Good weather: 728,000 sec

#### Criteria for reconstruction quality

- Cores must be inside the ARGO carpet, cannot in the PRCs on the edges
- Cherenkov images must fully contained in the telescope, i.e. space angle < 6 ° respect to the axis of the telescope & the number of fired tubes >= 6

#### Cherenkov image cleaning

- Single channel threshold: S/N>3.5;
- Arrival time: all triggered pixel must be in a window of  $\Delta t=240$  ns;
- Isolated pixels must be rejected

#### 8218 events are well reconstructed above 100 TeV

# Comparison between Data and MC

 Total number photo-electrons in shower images for shower energy measurement



## Comparison between Data and MC

- Zenith angle of the shower arrival direction
- The angular resolution of the arrival direction is  $0.3^{\circ}$



# Comparison between Data and MC

- The impact parameter of shower respect to the telescope
- The spatial resolution of the shower core position is 2 m



### **H&He Selection**

Most-hit-RPC at the core of a shower



### **H&He Selection**

 Elongation of the shower image L/W ~ 0.09(R<sub>p</sub>/10m)



### **Multi-parameter Analysis**

- $p_L = N_{\text{max}} 1.44 \log_{10}(E_{\text{rec}}/1TeV)$
- $p_c = L/W 0.091 \times (R_p/10m) 0.14/og_{10}(E_{rec}/1TeV)$



### Aperture and contamination



The contamination of heavy nuclei is 2.3% below 700 TeV
 Selecting efficiency is ~ 30%

> The ratio between H and He is 1:0.39

# Energy reconstruction Using $\Sigma N_{pe}$ in shower image

#### Look-up table: light components only

- Impact parameter (R<sub>p</sub>): 5m/bin
- LogN<sub>pe</sub> : 0.1/bin
- R<sub>p</sub>: linear interpolation between bins
- N<sub>pe</sub> : Quadratic interpolation between bins



#### log10(Energy/TeV)





# Final H&He Data Set

827000 seconds good weather data,

| $log E_{min}$ - $log E_{max}$ (TeV) | 2.00- | 2.15- | 2.30- | 2.45- | 2.60- | 2.75- |
|-------------------------------------|-------|-------|-------|-------|-------|-------|
|                                     | 2.15  | 2.30  | 2.45  | 2.60  | 2.75  | 2.90  |
| # of events                         | 565   | 371   | 227   | 121   | 69    | 39    |

- The contamination of heavier nuclei is model dependent
  - 1:1:1:1, 5.1%
  - Horandel, 2.3%
  - H4A, <2%



### CREAM: 1.09x1.95x10<sup>-11</sup>(E/400TeV)<sup>-2.62</sup> ARGO-YBJ: 1.95x10<sup>-11</sup>(E/400TeV)<sup>-2.61</sup> Hybrid: 0.94x1.95x10<sup>-11</sup>(E/400TeV)<sup>-2.62</sup>



#### Photometric Calibration of the Cherenkov Telescopes

- A probe is calibrated by comparing with a HPD (calibrated by NIST) at the HiRes lab in Utah;
- An UV LED mounted at the center of the mirror is calibrated by the probe many times during the data taking;
- The PMT camera is calibrated by the UV LED every day.
- The systematic uncertainty of the calibration constant :  $\sim$  7%.

0.5

#### The probe





### Systematic Uncertainty (1)

#### Energy determination uncertainty ~9.7%

- Calibration 5.6%
- Weather condition 7.6%

(include mirror reflectivity and glass window transmission)

- Method of energy reconstruction <1.2%
- High energy hadronic interaction model <1.0%
   (QGSJET II-03 vs. SIBYLL2.1)
- Low energy hadronic interaction model (GHEISHA vs. FLUKA) <2.0%

Systematic Uncertainty (2)

Selection efficiency uncertainty:

- QGSJET II-03 vs. SIBYLL2.1 <1.0%
  - GHEISHA vs. FLUKA <3.5%
  - Reconstruction Quality Cuts <3.0%</li>
- Calib. of the analog read-out of RPC ~7.0%
  - The composition model by Horandel is compared with H4A by Gaisser or an extrapolation of CREAM data

• The uncertainty due to composition ~6.0% model: ~ 6% on flux below 700 TeV.

• If some extreme models are used, such as Proton dominant or Fe dominant, the uncertainty can be as large as 14%

~14.0%

10.3 or 16.3%

### Further Analysis: Optimizing for Statistics at High Energies





By loosening the criteria on H & He selection, the aperture

is enlarged by a factor of 2.4, selecting efficiency ~ 72%

- # of H & He events increases from 490 to 1231 above 200 TeV
- The contamination of heavy species increases from 2.3% to 7.2% below 700 TeV
- > The ratio between H and He increases from 1:0.39 to 1:0.8

#### **Discover the "knee" of the Proton Spectrum below 1 PeV**

~6 $\sigma$  deviation from the single-index power law the knee is at (640  $\pm$  87) TeV spectral index is >3.3 above the knee



### Most CR acceleration models have problems to produce the low energy knee of the proton spectrum!

• For instance, Horandel and H4A by Gaisser et. al



J.R. Horandel, APP, 21, 241 (2004)

T.K. Gaisser et al., APP,35, 801 (2012)

# Summary

- From 2 TeV to ~700 TeV, three measurements for the H&He spectrum by CREAM, ARGO-YBJ-digital and the Hybrid of ARGO-YBJ-analog and C-telescope agree well.
- They all fitted very well with single-index-power-law function form. The index is 2.62±0.01 &

The flux is **1.95x10<sup>-11</sup> +9%\-6%** (GeV <sup>-1</sup>m<sup>-2</sup>sr<sup>-1</sup> s<sup>-1</sup>)at 400TeV

- The difference in flux can be interpreted due to a difference of energy scale  $\pm 3.5\%$  between experiments
- The knee of the p-spectrum is discovered at (640 $\pm$ 87) TeV
- ~6σ deviation from the single-index power law
- Spectral index is >3.3 above the knee

# LHAASO: Prospects of CR Physics

- 30TeV-10PeV
  - Energy scale
  - Knees for *H,He,...*
  - Anisotropy
- 10PeV-100PeV
  - Composition
  - Energy spectrum: I
- 100PeV-2EeV
  - Spectrum bending and composition changing
  - Transition from galactic to extra-galactic



- The difficulty is to select individual species from are showers
- Event by event fluctuations and little recorded info

#### • Solution: measuring more info about the showers







#### **Central Array:**

24 Wide field View Cherenkov telescopes: precision measurement of CR pectrum 452 burst detectors: identification of primary CR species Plus scintillator detectors every 15 m and μ-detectors every 30 m



#### 地理位置: S217穿过海子山自然保护区中间地带 北纬29°21'30.7", 东经100°08'14.65" 海拔4400米





稻城 (3740m) 40公里

稻城海子山LHAASO站址







# **International Collaboration**

- Physicists (IPN-Orsay)
  - Yingtao Chen (PhD student funded by CSC), Olivier Deligny, Isabelle Lhenry-Yvon, Tiina Suomijärvi, Francesco Salamida (post-doc)
  - New PhD student, Zizhao Zong, currently applying funds from CSC
- Technical group
  - Valérie Chambert, Bengyun Ky, Emmanuel Rauly, Thi Nguyen Trung, Eric Wanlin (IPN-Orsay)
  - Gisèle Martin-Chassard, Frederic Dulucq, Christophe de la Taille (OMEGA)
- CAS Project for the China-France collaboration is approved (1.1 M CNY) this year



- Proposing with Italian colleagues: G-astro, GRBs, DM, CRs (submitting to INFN)
- Working group with Russian for neutron detectors
- Thailand solar CR group (working together)

# Conclusions

- LHAASO observatory
  - Provides also crucial CR data in the region of knees
- LHAASO has been selected for funding in China.
- Agreement with Sichuan province for site is scheduled to be signed on June 5th
- Domestic collaboration: for 25 sub-systems
- International Coll. is growing

Thanks for your attention!

# Generated H&He spectrum and its reconstruction

- Ivan required test on the generated H&He spectrum.
- Events are generated with a single-index-power-law ( $\gamma$ =-2.7) as represented by black dots. Spread over an area of 260mX260m, 22°X21° in the sky near  $\theta$ =30°
- Corsika generates showers, G4ARGO generates RPC signals and ray-tracing procedure generates telescope images.
- Reconstruct and analyze them as what has been done on data. The "measured" spectrum is represented by the blue squares.



# Generated H&He spectrum and its reconstruction

- Beyond Ivan required test on the generated H&He spectrum with bending.
- Events are generated with a double-index-power-law ( $\gamma$ =-2.7/3.4, E<sub>k</sub>=700TeV) as represented by black dots. Spread over an area of 260mX260m, 22°X21° in the sky near  $\theta$ =30°
- Corsika generates showers, G4ARGO generates RPC signals and ray-tracing procedure generates telescope images.
- Reconstruct and analyze them as what has been done on data. The "measured" spectrum is represented by the blue squares.



### **Bayesian Unfolding**

> To take into account any kind of smearing between bins due to the finite resolution of ~25%, the Bayesian method is applied to the observed energy distribution  $P(E_{rec})$ .

 $\mathbf{P}(E^{i}) = \sum_{i=1}^{n} \mathbf{P}(E^{i} | E^{j}_{rec}) \cdot \mathbf{P}(E^{j}_{rec})$  $\mathbf{P}(E^{i}|E^{j}_{rec}) = \mathbf{P}(E^{j}_{rec} | E^{i}) \cdot \mathbf{P}(E^{i}) / \sum_{l=1}^{m} \mathbf{P}(E^{j}_{rec} | E^{l}) \cdot \mathbf{P}(E^{l}).$  $P(E_{rec} | E)$  is from Monte Carlo simulation  $P(E^{i}) = N(E^{i}) / \sum E' P(E_{rec}^{j}) = N(E_{rec}^{j}) / N_{sel}$ Unfold Response Red: MC-rec 10<sup>3</sup> Blue: MC-real Black: Unfolding 10<sup>2</sup> 10 1 10<sup>-1</sup> 2.5 3.5 1.5 2 3

### Energy scale: Moon Shadow displacement

 $N \approx 21 \cdot (E_{TeV}/Z)^{1.5}$ 

1 – 30 (TeV/Z)

Two systematic uncertainties may affect the Multiplicity-Energy relation:

- the assumed primary CR chemical composition (7%)
- the uncertainties of different hadronic models (6%)



The energy scale error is estimated to be smaller than 13% in the energy range 1 - 30 (TeV/Z).

Phys.Rev.D84:022003,2011