

A Higher Altitude Water Chernkov Detector for TeV gamma-rays

Michael DuVernois University of Wisconsin-Madison WIPAC & Physics

Paris Workshop 26 May 2014

Starting from the HAWC Observatory, thinking about the Southern Hemisphere

Outline

Going to Higher Altitude & Southern Hemisphere

- Science
- Simulations

Where?

- Site Options
- Building from HAWC experience

How?

- First sketches of detectors
- ...and electronics

TeV Sky

- ~140 sources (~90 Galactic).
- Not an all-sky survey catalog is strongly *biased*.

Altitude Effects

- Higher altitude leads to lower energy threshold
 - Higher in the air shower
 - Improves ability to cross-check with IACTs
 - EBL cutoff becomes negligible at lower energy
 - Better to determine spectral shape
- Higher backgrounds, still on the exponential decay of the showers
 - Need to be able to deal with rates
- Simulate a strawman water Cherenkov detector at differing altitudes
 - Includes work of Asif Imran & Gus Sinnis & Andy Smith (UMD)
- Show this is plausible with real sites

Implementation

- Use CORSIKA (v6990) capability to save particle output for 10 different observation levels
 - **–** 6600m, 6000m, 5200m, 4100m
- QGSJET for high-energy interactions
- GHEISHA for low-energy hadronic interactions
- Followed electrons to 3 MeV, muons and hadrons to 300 MeV
- CORSIKA atmospheric model (US standard):
 - 6600m = 445 g/cm²
 - 6000m = 483 g/cm²
 - 5200m = 538 g/cm²
 - 4100m = 623 g/cm²
- Gammas thrown on E^{-2.3} spectrum
- Protons thrown on E^{-2.7} spectrum
- Fixed zenith angle runs (0, 20, 30, 40, 45, 50)

Energy at Ground (gamma & proton) Zenith

Array Simulation

R5912 Quantum Efficiency 35 £³⁰ High-QE ₽̃25 Standard QE i≣ 20 륟 15 σ₁₀ 0 300 600 200 400 500 700 Wavelength [nm] HAMAMATSU

- Dense array 30x30 tanks
- Each tank 1.5m radius and 1.5m tall
- Tank separation 3m
- I 10" High QE PMT in each tank
- Convolve PMT QE curve with Cherenkov spectrum: 35 PEs/MeV for high QE (27 PEs/MeV for R5912)
- Results in ~4 MeV/detected PE (ratio of PMT:tank area)
- Simulation:
 - Throw core over 200mx200m area (800mx800m for protons)
 - Translate each particle position by core location (and array center)
 - Loop over particles in shower at each elevation
 - Determine if particle hits a tank
 - <detected PES> = MAX(particle energy/2 MeV, 75 MeV) / 4
 - detected PES = Poisson(mu=<detected PES>)
 - Enforce trigger 30 tanks with >=1 detected PE

20deg South

Moving detector around...

Sensitivity to a Crab-like Point Source

Adding some sources (per month)

Softer spectrum (per day)

HAWC REMINDER

HAWC Site: Pico de Orizaba/Sierra Negra

The HAWC Detector

- 4,100 altitude meter site at Sierra Negra, Mexico (~19° N), near the Large Millimeter Telescope.
- 22,000 m² area (57% coverage).
- 300 water tanks:
 - 7.3 m diameter × 4.5 m depth.
 - 3 upward-facing 8" PMTs and one upward-facing 10" PMT (with high quantum efficiency) on the bottom of each tank.
- 1 Crab (5σ) per day.

The HAWC Detector

• HAWC tank construction, bladder, and 8" photomultiplier.

Wikipedia...

Highest permanent observatories [edit]

Permanent observatories above 3,000 m:

Observatory Name +	Elevation +	Observatory Site +	Location +	Coordinates +	Established +	Type of Observatory \$
University of Tokyo Atacama Observatory (TAO)	5,640 m (18,500 ft) ^[10]	Cerro Chajnantor	Atacama Desert, Chile	Q 22°59'12″S 67°44'32″W	2009 ^[10]	Optical, infrared
Chacaltaya Astrophysical Observatory	5,230 m (17,160 ft) ^[9]	Chacaltaya	Andes, Bolivia	(♀ 16°21′12″S 68°07′53″W	1946 ^[9]	Cosmic ray, gamma ray
James Ax Observatory	5,200 m (17,030 ft)	Cerro Toco	Atacama Desert, Chile	Q 22°57′30″S 67°47′10″W	2011	Microwave
Atacama Cosmology Telescope	5,190 m (17,030 ft)	Cerro Toco	Atacama Desert, Chile	(⊉ 22°57′31″S 67°47′16″W	2007	Microwave
Llano de Chajnantor Observatory	5,104 m (16,745 ft)	Llano de Chajnantor	Atacama Desert, Chile	Q 23°01′22″S 67°45′17″W	1999	Millimeter wave, submillimeter
Shiquanhe Observatory (NAOC Ali Observatory) ^[11]	5,100 m (16,700 ft) ^[12]	Shiquanhe, Ngari Plateau	Tibet Autonomous Region, China	(♀ 32°19′N 80°01′E	2011	Optical

Road to 5600m...

Back in 2005

Chacaltaya, with long cosmic ray history

Detector ideas

Electronics synergy with Next Generation IceCube & PINGU

- New PDOM electronics are being produced
- These are fairly general purpose, digital readouts with feature extraction, good for all environments, closely coupled to a 10" PMT
- Power consumption <2W (could be <0.5W)
- Built in communications, capable of 1Mb over random wire
- FADC with >100MHz bandwidth & >14b resolution
- Timing to <5ns either cabled or via Ethernet/White Rabbit

Strawman PINGU "PDOM" Design

Keep these parts/designs:

- Sphere
- Penetrator
- PMT, Collar, Gel
- Harness
- HV generator and Base
- Quad Cable technology

Develop new:

- Digitizer (ADC)
- Comms circuitry
- Flasher
- FPGA logic
- Power Supply
- PCB & packaging

Keep/upgrade these Designs:

- DOMAPP
- CONFIGBOOT (Built into FPGA now)
- DAQ
- DOR FUNCTIONALITY

PDOM Block Diagram

Rough Cost: IC DOM vs. PDOM

ITEM	High QE IC DOM	PDOM
PMT PMT Base Board	2000 130	2000 130
Sphere/Harness	650	650
Penetrator	400	400
Main Board ATWD Test /pkg Delay Board Engineering (project)	1900 500 130 (3mo)	1000 0 0 (36mo)
Flasher Board Flasher Parts	150 50	0 50
HV Supply Board HV Module	190 380	0 380
Mu Metal	150	150
TOTALS	\$ 6630 (+6mo)	\$ 4760 (+36mo)

Inexpensive and Compact muon detection

10 cm of scintillator yields 2e5 photons for a through-mu
40 PE detected in a 2" PMT
0.75 m³ of LAB scintillator
\$850/detector (~1/4 cost of plastic scintillator)
Much easier to construct and deploy

Not exactly conclusions

- Going higher is possible, quite desirable, and plausible for a Southern Hemisphere experiment using WCD
- Probably needs a different construction technique than HAWC, build lower and bring units up, tanks more like Auger perhaps
- Electronics could have significant synergies with Next Generation IceCube and other experiments

BACKUP SLIDES